Biochemistry of Alcohols

Release Date:

Alcohol is a general term used to refer to chemical structures containing the hydroxyl (-OH) radical group. In daily life, it refers to a type of alcohol, usually called ethanol. When alcohol is ingested into the body, a series of chemical effects occur, especially in the liver. The elimination process that begins when alcohol is [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inMedicolegal Aspect of Alcohol
    First Page59
    Last Page76
    DOIhttps://doi.org/10.69860/nobel.9786053359487.4
    Page Count18
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Alcohol is a general term used to refer to chemical structures containing the hydroxyl (-OH) radical group. In daily life, it refers to a type of alcohol, usually called ethanol. When alcohol is ingested into the body, a series of chemical effects occur, especially in the liver. The elimination process that begins when alcohol is ingested is usually absorbed through the stomach and small intestine. This absorption process varies depending on the type of alcohol, the type of food and drinks consumed, the physical condition of the person and other factors. Once in the bloodstream, alcohol is distributed to various tissues of the body, with the majority being metabolized in the liver. However, a small amount is excreted through sweating, urine and respiration. Alcohol metabolism in the liver is carried out by the enzymes alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). Compounds such as nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADH) play an important role in this metabolism process. Ethanol can also be eliminated by non-oxidative pathways. The effects of alcohol on the body include acetate formation in the liver, impaired metabolism of long-chain fatty acids, altered glucose homeostasis and changes in brain function. Long-term alcohol consumption can have adverse effects on the heart, muscles, brain and other tissues. Alcohol detection is important in forensic toxicology, especially to determine the role of alcohol in forensic events such as traffic accidents and homicides. Biomarkers are important tools used in the detection of alcohol. These include direct biomarkers (EtG, EtS, PEth, YAEE) and indirect biomarkers (MCV, CDT, GGT). These biomarkers help to identify alcohol consumption over different time periods and in different biological samples. Biomarkers are important for the detection of alcohol dependence and alcohol consumption. However, it is important to choose the right biomarker, taking into consideration the characteristics and limitations of each biomarker.

    Melisa Pehlivan (Author)
    Yıldız Technical University
    https://orcid.org/0009-0005-8975-3299
    3Melisa PEHLIVAN is a chemist with a Bachelor’s degree in Chemistry from the Department of Chemistry, Faculty of Arts and Sciences at Yıldız Technical University, Istanbul. With a strong foundation in chemical analysis and laboratory techniques, she is proficient in using various chemistry software and tools. Melisa is known for her excellent problem-solving and critical-thinking abilities, as well as her strong communication and teamwork skills. She is fluent in Turkish and proficient in English. For more information, she can be contacted via email at melisa_pehlivan@outlook.com or through her.

    • Abdullah, D. Z. (2015). Quantitative determination of ethyl glucuronide and ethyl sul- fate in post-mortem blood using Hybrid-SPE-PPT and UHPLC–MS/MS (Master’s thesis, Norwegian University of Life Sciences, Ås). https://nmbu.brage.unit.no/ nmbu-xmlui/handle/11250/2366774

    • Aşıcıoğlu, F., Mutlu, E., & Belce, A. (2019). Adli Vakalarda Etil Glukuronid ve Etil Sülfat Analizinin Önemi: Olgu Bildirileri. Turkiye Klinikleri Journal of Forensic Medicine & Forensic Sciences, 16(1). doi: 10.5336/forensic.2018-62293

    • Bach, P., Zois, E., Vollstädt‐Klein, S., Kirsch, M., Hoffmann, S., Jorde, A., ... & Kiefer, F. (2019). Association of the alcohol dehydrogenase gene polymorphism rs1789891 with gray matter brain volume, alcohol consumption, alcohol craving and relapse risk. Addiction Biology, 24(1), 110-120. https://doi.org/10.1111/adb.12571

    • Baduroğlu, E., & Durak, D. (2010). Alkol ile ilgili adli tıp sorunları. Uludağ Üniver- sitesi Tıp Fakültesi Dergisi, 36(2), 65-71. https://dergipark.org.tr/tr/pub/uutfd/ issue/35282/391543

    • Bertocci, L. A., Jones, J. G., Malloy, C. R., Victor, R. G., & Thomas, G. D. (1997). Oxida- tion of lactate and acetate in rat skeletal muscle: analysis by 13C-nuclear magnetic resonance spectroscopy. Journal of applied physiology, 83(1), 32-39. https://doi. org/10.1152/jappl.1997.83.1.32

    • Blanco-Colio, L. M., Valderrama, M., Alvarez-Sala, L. A., Bustos, C., Ortego, M., Hernández-Presa, M. A., ... & Egido, J. (2000). Red wine intake prevents nucle- ar factor-κB activation in peripheral blood mononuclear cells of healthy volun- teers during postprandial lipemia. Circulation, 102(9), 1020-1026. https://doi. org/10.1161/01.CIR.102.9.1020

    • Bosron, W. F., Ehrig, T., & Li, T. K. (1993, May). Genetic factors in alcohol metabolism and alcoholism. In Seminars in liver disease (Vol. 13, No. 02, pp. 126-135). © 1993 by Thieme Medical Publishers, Inc.. doi: 10.1055/s-2007-1007344 .

    • Bühler, R., Pestalozzi, D., Hess, M., & Von Wartburg, J. P. (1983). Immunohisto- chemical localization of alcohol dehydrogenase in human kidney, endocrine or- gans and brain. Pharmacology Biochemistry and Behavior, 18, 55-59. https://doi. org/10.1016/0091-3057(83)90147-8

    • Castaneda, R., Sussman, N., Westreich, L., Levy, R., & O’Malley, M. (1996). A review of the effects of moderate alcohol intake on the treatment of anxiety and mood disorders. The Journal of clinical psychiatry, 57(5), 207-212. https://pubmed.ncbi. nlm.nih.gov/8626352/

    • Chen, L., Wang, F., Sun, X., Zhou, J., Gao, L., Jiao, Y., ... & Zhao, J. (2010). Chronic eth- anol feeding impairs AMPK and MEF2 expression and is associated with GLUT4 decrease in rat myocardium. Experimental & molecular medicine, 42(3), 205-215. Doi: 10.3858/emm.2010.42.3.021

    • Crabb, D. W., & Liangpunsakul, S. (2006). Alcohol and lipid metabolism. Journal of gastroenterology and hepatology, 21, S56-S60. https://doi.org/10.1111/j.1440- 1746.2006.04582.x

    • Dahl, H. (2011). Evaluation and clinical application of ethyl glucuronide and ethyl sul- fate as biomarkers for recent alcohol consumption. Karolinska Institutet (Sweden). https://openarchive.ki.se/xmlui/bitstream/handle/10616/40395/Dr%20Helen%20 Dahl%20Bok%20bib.pdf?sequence=1

    • Dasgupta, A. (2015). Direct alcohol biomarkers ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidylethanol. Alcohol and Its Biomarkers: Clinical Aspects and Laboratory Determination, 1st edition. Elsevier Inc: San Diego, CA, 181-182. https://doi.org/10.1016/B978-0-12-800339-8.00008-0

    • Dasgupta, A. (2015). Genetic aspects of alcohol metabolism and drinking behavior. Alcohol and its Biomarkers, 37-63. https://doi.org/10.1016/B978-0-12-800339- 8.00002-X

    • Dengiz, H. Çukurova Üniversitesi Tıp Fakültesi Adli Tıp Anabilim Dalında alkol ana- lizi yapılan örneklerde etanol biyobelirteçlerinden etil glukuronit (ETG) ve etil sülfat (WTS)ın belirlenmesi (Master’s thesis, Institute of Health Sciences). https:// tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=4bxftx0D9abYpX0Ciog0u- w&no=spObOqR5hxzTR1TGQUBXbw

    • Dettling, A., Fischer, F., Böhler, S., Ulrichs, F., Skopp, G., Graw, M., & Haffner, H. T. (2007). Ethanol elimination rates in men and women in consideration of the cal- culated liver weight. Alcohol, 41(6), 415-420. DOI: 10.1016/j.alcohol.2007.05.003

    • DJURDJIC V, STOJANOVIC S (1998). A Method for Spectrophotometric Determi- nation of Acetaldehyde with Thiosemicarbazide in Blood. The scientific journal Facta Universitatis Series: Physics, Chemistry and Technology Vol. 1, 5: 129 – 134 https://cer.ihtm.bg.ac.rs/bitstream/id/18027/phat98-09.pdf

    • Farrés, J., Moreno, A., Crosas, B., Peralba, J. M., Allali‐Hassani, A., Hjelmqvist, L., ... & Parés, X. (1994). Alcohol Dehydrogenase of Class IV (σσ‐ADH) from Human Stomach: cDNA Sequence and Structure/Function Relationships. European jour- nal of biochemistry, 224(2), 549-557. https://cer.ihtm.bg.ac.rs/bitstream/id/18027/ phat98-09.pdf

    • Foster, D. W. (2012). Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. The Journal of clinical investigation, 122(6), 1958-1959. DOI: 10.1172/jci63967 Frost, G., Sleeth, M. L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., ... & Bell, J. D. (2014). The short-chain fatty acid acetate reduces appetite via a cen- tral homeostatic mechanism. Nature communications, 5(1), 3611. DOI: 10.1038/ ncomms4611

    • Handa, R. K., DeJoseph, M. R., Singh, L. D., Hawkins, R. A., & Singh, S. P. (2000). Glu- cose transporters and glucose utilization in rat brain after acute ethanol adminis- tration. Metabolic brain disease, 15, 211-222. DOI: 10.1007/BF02674530

    • Herzig, S., & Shaw, R. J. (2018). AMPK: guardian of metabolism and mitochondrial homeostasis. Nature reviews Molecular cell biology, 19(2), 121-135. DOI:10.1038/ nrm.2017.95

    • Houck, M. M., & Siegel, J. A. (2010). Fundamentals of forensic science. Academic Press. https://shop.elsevier.com/books/fundamentals-of-forensic-science/ houck/978-0-12-374989-5

    • J Dinis-Oliveira, R. (2016). Oxidative and non-oxidative metabolomics of ethanol. Current drug metabolism, 17(4), 327-335. DOI: 10.2174/1389200217666160125 113806

    • Kerr, J. T., Maxwell, D. S., & Crabb, D. W. (1989). Immunocytochemistry of alcohol dehydrogenase in the rat central nervous system. Alcoholism: Clinical and Exper- imental Research, 13(6), 730-735. DOI: 10.1111/j.1530-0277.1989.tb00412.x

    • Keten, A., Kanburoğlu, Ç., Tümer, A. R., & Odabaşı Balseven, A. (2011). Adli Bilim- lerde Alkol Alımının Belirlenmesinde Kullanılan Belirteçler. Turkiye Klinikleri J Foren Med, 8(1), 37-45. https://www.academia.edu/86583890/Adli_Bilimlerde_ Alkol_Al%C4%B1m%C4%B1n%C4%B1n_Belirlenmesinde_Kullan%C4%B1lan_ Belirte%C3%A7ler

    • Kiviluoma, K., & Hassinen, I. (1983). Role of acetaldehyde and acetate in the develop- ment of ethanol‐induced cardiac lipidosis, studied in isolated perfused rat hearts. Alcoholism: Clinical and Experimental Research, 7(2), 169-175. DOI: 10.1111/ j.1530-0277.1983.tb05433.x

    • Kleber, H. D., Weiss, R. D., Anton, R. F., George, T. P., Greenfield, S. F., Kosten, T. R., ... & Connery, H. S. (2007). Treatment of patients with substance use disorders. The American Journal of Psychiatry, 164(4), 3-123. https://psychiatryonline.org/pb/as- sets/raw/sitewide/practice_guidelines/guidelines/substanceuse-1410197810077. pdf

    • Krebs, H. A., Freedland, R. A., Hems, R., & Stubbs, M. (1969). Inhibition of hepatic gluconeogenesis by ethanol. Biochemical Journal, 112(1), 117-124. doi: 10.1042/ bj1120117

    • Lieber, C. S. (2003). Relationships between nutrition, alcohol use, and liver disease. Alcohol Research & Health, 27(3), 220. https://www.researchgate.net/publica- tion/8186385_Relationships_Between_Nutrition_Alcohol_Use_and_Liver_Dis- ease

    • Lieber, C. S., Jones, D. P., & DeCarli, L. M. (1965). Effects of prolonged ethanol intake: production of fatty liver despite adequate diets. The Journal of clinical investiga- tion, 44(6), 1009-1021. doi: 10.1172/JCI105200

    • Loew, M., Boeing, H., Stürmer, T., & Brenner, H. (2003, April). Relation among alcohol dehydrogenase 2 polymorphism, alcohol consumption, and levels of gamma-glu- tamyltransferase. Alcohol, 29(3), 131–135. DOI: 10.1016/s0741-8329(03)00015-6

    • Lundquist, F., Tygstrup, N., Winkler, K., Mellemgaard, K., & Munck-Petersen, S. (1962). Ethanol metabolism and production of free acetate in the human liver. The Journal of clinical investigation, 41(5), 955-961. doi: 10.1172/JCI104574

    • Maenhout, T. M., De Buyzere, M. L., & Delanghe, J. R. (2013). Non-oxidative ethanol metabolites as a measure of alcohol intake. Clinica Chimica Acta, 415, 322-329. DOI: 10.1016/j.cca.2012.11.014

    • Martínez, S. E., Vaglenova, J., Sabrià, J., Martínez, M. C., Farrés, J., & Parés, X. (2001). Distribution of alcohol dehydrogenase mRNA in the rat central nervous system. Consequences for brain ethanol and retinoid metabolism. European journal of biochemistry, 268(19), 5045-5056. https://pubmed.ncbi.nlm.nih.gov/11589695/

    • Meza, E., & Kranzler, H. R. (1996). Closing the gap between alcoholism research and practice: The case for pharmacotherapy. Psychiatric Services, 47(9), 917-920. DOI: 10.1176/ps.47.9.917

    • Muneer, P. A., Alikunju, S., Szlachetka, A. M., & Haorah, J. (2011). Inhibitory effects of alcohol on glucose transport across the blood–brain barrier leads to neurodegen- eration: preventive role of acetyl-l-carnitine. Psychopharmacology, 214, 707-718. doi: 10.1007/s00213-010-2076-4

    • Nuutinen, H., Lindros, K., Hekali, P., & Salaspuro, M. (1985). Elevated blood acetate as indicator of fast ethanol elimination in chronic alcoholics. Alcohol, 2(4), 623-626. DOI: 10.1016/0741-8329(85)90090-4

    • Palmer, T. N. (1989). The biochemistry of alcohol and alcohol abuse. Science Progress (1933-), 1-15. https://pubmed.ncbi.nlm.nih.gov/2727660/

    • Reisfield, G. M., Teitelbaum, S. A., Opie, S. O., Jones, J., Morrison, D. G., & Lewis, B. (2020). The roles of phosphatidylethanol, ethyl glucuronide, and ethyl sulfate in identifying alcohol consumption among participants in professionals health pro- grams. Drug testing and analysis, 12(8), 1102-1108. DOI: 10.1002/dta.2809

    • Ritzmann, R. F., & Tabakoff, B. (1976). Body temperature in mice: a quantitative meas- ure of alcohol tolerance and physical dependence. Journal of Pharmacology and Experimental Therapeutics, 199(1), 158-170. https://jpet.aspetjournals.org/con- tent/199/1/158

    • Schuckit, M. A. (1994). Low level of response to alcohol as a predictor of future al- coholism. The American journal of psychiatry, 151(2), 184-189. DOI: 10.1176/ ajp.151.2.184

    • Singh, M., Gupta, S., Singhal, U., Pandey, R., & Aggarwal, S. K. (2013). Evaluation of the oxidative stress in chronic alcoholics. Journal of clinical and diagnostic re- search: JCDR, 7(8), 1568. doi: 10.7860/JCDR/2013/5596.3210

    • Smith, G. I., Jeukendrup, A. E., & Ball, D. (2007). Sodium acetate induces a metabol- ic alkalosis but not the increase in fatty acid oxidation observed following bicar- bonate ingestion in humans. The Journal of nutrition, 137(7), 1750-1756. DOI: 10.1093/jn/137.7.1750

    • Starnes, J. W., Wilson, D. F., & Erecinska, M. A. R. I. A. (1985). Substrate dependence of metabolic state and coronary flow in perfused rat heart. American Journal of Physiology-Heart and Circulatory Physiology, 249(4), H799-H806. DOI: 10.1152/ ajpheart.1985.249.4.H799

    • Vıel G, Boscolo-Berto R, Cecchetto G, Faıs P, Nalesso A, Ferrara SD (2012). Phosphati- dylethanol in blood as a marker of chronic alcohol use: a systematic review and meta-analysis. International journal of molecular sciences 13(11): 14788-14812. DOI: 10.3390/ijms131114788

    • Volkow, N. D., Kim, S. W., Wang, G. J., Alexoff, D., Logan, J., Muench, L., ... & Tomasi, D. (2013). Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain. Neuroimage, 64, 277-283. DOI: 10.1016/j.neu- roimage.2012.08.057

    • Volkow, N. D., Wang, G. J., Kojori, E. S., Fowler, J. S., Benveniste, H., & Tomasi, D. (2015). Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic in- creases. Journal of Neuroscience, 35(7), 3248-3255. DOI: 10.1523/JNEUROS- CI.4877-14.2015

    • Wilson, D. F., & Matschinsky, F. M. (2019). Hyperbaric oxygen toxicity in brain: A case of hyperoxia induced hypoglycemic brain syndrome. Medical Hypotheses, 132, 109375. DOI: 10.1016/j.mehy.2019.109375

    • Wilson, D. F., Cember, A. T., & Matschinsky, F. M. (2017). The thermodynamic basis of glucose‐stimulated insulin release: a model of the core mechanism. Physiological Reports, 5(12), e13327. DOI: 10.14814/phy2.13327

    • Wilson, D. F., Cember, A. T., & Matschinsky, F. M. (2018). Glutamate dehydrogenase: role in regulating metabolism and insulin release in pancreatic β-cells. Journal of Applied Physiology, 125(2), 419-428. DOI: 10.1152/japplphysiol.01077.2017

    • Yamamoto, T., & Yamakawa, M. (1987). Effect of acetate administration on rats with chronic uremia. Artificial Organs, 11(3), 208-213. https://doi. org/10.1111/j.1525-1594.1987.tb02661.x

    • Yıldırım, E. F., Gürler, M., & Gürbüz, A. (2024). Biyokimyasal Açıdan Alkol Tayini ve Adli Bilimlerde Önemi. Journal of Ankara University Faculty of Medicine/ Ankara Üniversitesi Tip Fakültesi Mecmuasi, 77(1). DOI: 10.4274/atfm.gale- nos.2024.55477

    • Yıldırım, U. U., İlingi, U., & Balcı, Y. (2024). Çürümüş olgularda saptanan etil alkol ve metabolitleri. Ege Tıp Dergisi, 63(1), 64-70. https://doi.org/10.19161/etd.1261002 Yılmaz, H., Maviş, M. E., Gürsu, G. G., & Polat, O. (2023). Alkol Kullanımının Tespit ve Takibinde Direkt Etanol Biyobelirteçleri Etil Glukuronit ve Etil Sülfatın İdrar ve Serum Matrislerinde LC-MS/MS Ölçüm Metodunun Geliştirilmesi. Journal of Ankara University Faculty of Medicine/Ankara Üniversitesi Tip Fakültesi Mec- muasi, 76(2). 10.4274/atfm.galenos.2023.88156

    • Zakhari, S. (2013). Alcohol metabolism and epigenetics changes. Alcohol research: current reviews, 35(1), 6. https://pubmed.ncbi.nlm.nih.gov/24313160/

    • Zimatkin, S. M., & Deitrich, R. A. (1997). Ethanol metabolism in the brain. Addiction biology, 2(4), 387-400. DOI: 10.1080/13556219772444

    • Zimatkin, S. M., Pronko, S. P., Vasiliou, V., Gonzalez, F. J., & Deitrich, R. A. (2006).

    • Enzymatic mechanisms of ethanol oxidation in the brain. Alcoholism: clinical and experimental research, 30(9), 1500-1505. DOI: 10.1111/j.1530-0277.2006.00181.x

    Share This Chapter!