Release Date: 2024-06-12

Immunotherapy in Benign Hematological Diseases

Cihan Ural (Author)

Release Date: 2024-06-12

The immune system is a network of biological systems that protects an organism from diseases. Immunotherapy, also called biological therapy, treats diseases by activating or suppressing the immune system. Immunotherapy uses substances to stimulate or suppress the immune system to help the body fight cancer, autoimmune disorder and other diseases. Immunotherapeutics have transformed the treatment [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inImmunotherapy in Human Cancers
    First Page49
    Last Page60
    DOIhttps://doi.org/10.69860/nobel.9786053359388.5
    Page Count12
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    The immune system is a network of biological systems that protects an organism from diseases. Immunotherapy, also called biological therapy, treats diseases by activating or suppressing the immune system. Immunotherapy uses substances to stimulate or suppress the immune system to help the body fight cancer, autoimmune disorder and other diseases. Immunotherapeutics have transformed the treatment of malignant diseases and also afford major opportunities for treating diseases beyond cancer. Apart from cancer treatment, immunotherapy reduces an abnormal immune response in autoimmune diseases; in organ transplants, a normal immune response is reduced to prevent rejection of transplanted organs or cells; In diseases caused by complement activation, the complement system is inhibited; and in allergic diseases, tolerance to the allergen develops. Immunotherapy in benign hematological diseases is reviewed here.

    Cihan Ural (Author)
    MD, Assistant Professor, Van Yuzuncu Yil University
    https://orcid.org/0000-0003-1209-4668
    3Assistant Professor Cihan URAL Education: Istanbul University Medicine Faculty (2000-2006) Internal Diseases specilization: Ege University. Department of Internal Diseases(2006-2012) Internal Diseases Specialist(2012-2017) Hematology Specilization: Dicle Univeristy Medicine Faculty (2017-2021) Hematoloji Specialist (2021-2022) Department of Hematology. Van Yüzüncü Yıl University (2022-…)

    • Drake CG, Jaffee E, and Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol. 2006;90:51–81. 10.1016/S0065-2776(06)90002-9 [PubMed: 16730261]

    • Pui, C. H. & Evans, W. E. Acute lymphoblastic leukemia. N. Engl. J. Med. 339, 605–615 (1998)

    • Döhner, H., Weisdorf, D. J. & Bloomfield, C. D. Acute myeloid leukemia. N. Engl. J. Med. 373, 1136–1152 (2015).

    • Kayser, S. & Levis, M. J. The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica 108, 308–320 (2023)

    • Armitage, J. O., Gascoyne, R. D., Lunning, M. A. & Cavalli, F. Non-Hodgkin lymphoma. Lancet 390, 298–310 (2017).

    • Wang, H. W., Balakrishna, J. P., Pittaluga, S. & Jaffe, E. S. Diagnosis of hodgkin lymphoma in the modern era. Br. J. Haematol. 184, 45–59 (2019).

    • Ansell, S. M. Hodgkin lymphoma: diagnosis and treatment. Mayo Clin. Proc. 90, 1574– 1583 (2015)

    • van de Donk, N., Pawlyn, C. & Yong, K. L. Multiple myeloma. Lancet 397, 410–427 (2021

    • Kennedy, J. A. & Ebert, B. L. Clinical implications of genetic mutations in myelodysplastic syndrome. J. Clin. Oncol. 35, 968–974 (2017).

    • Bachireddy, P., Burkhardt, U. E., Rajasagi, M. & Wu, C. J. Haematological malignancies: at the forefront of immunotherapeutic innovation. Nat. Rev. Cancer 15, 201–215 (2015)

    • Graham BS, and Ambrosino DM. History of passive antibody administration for prevention and treatment of infectious diseases. Curr Opin HIV AIDS.2015;10(3):129–34. 10.1097/COH. 0000000000000154 PMid: PMCid:PMC4437582 [PubMed: 25760933]

    • Dickinson AM, Norden J, Li S, Hromadnikova I, Schmid C, Schmetzer H, et al. Graft-versusLeukemia Effect Following Hematopoietic Stem Cell Transplantation for Leukemia. Front Immunol. 2017;8:496 10.3389/fimmu.2017.00496PMid: PMCid:PMC5461268 [PubMed: 28638379]

    • Holtick, U. et al. Bone marrow versus peripheral blood allogeneic haematopoietic stem cell transplantation for haematological malignancies in adults. Cochrane Database Syst. Rev. Cd010189 (2014).

    • Du, J. et al. Comparison of allogeneic stem cell transplant and autologous stem cell transplant in refractory or relapsed peripheral T-cell lymphoma: a systematic review and meta-analysis. JAMA Netw. Open. 4, e219807 (2021).

    • Cornelissen, J. J. & Blaise, D. Hematopoietic stem cell transplantation for patients with AML in first complete remission. Blood 127, 62–70 (2016).

    • Im A, Pavletic SZ. Immunotherapy in hematologic malignancies: past, present, and future. J Hematol Oncol. 2017; 10: 94.

    • Cohen, S. et al. Hematopoietic stem cell transplantation using single UM171- expanded cord blood: a single-arm, phase 1-2 safety and feasibility study. Lancet Haematol. 7, e134– e145 (2020).

    • Lv M, Chang Y, Huang X. Everyone has a donor: contribution of the Chinese experience to global practice of haploidentical hematopoietic stem cell transplantation. Front Med. 2019; 13: 45-56.

    • Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLAhaploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2016; 13: 132.

    • Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998; 339: 1186-93.

    • Huang XJ, Chen YH, Xu LP, Zhang YC, Liu DH, Guo NL, et al. Combined transplantation of G-CSF primed allogeneic bone marrow cells and peripheral blood stem cells in treatment of severe aplastic anemia. Chin Med J (Engl). 2004; 117: 604-7. 22). Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008; 14: 641-50

    • Chang, Y. J. et al. Controlled, randomized, open-label trial of risk-stratified corticosteroid prevention of acute graft-versus-host disease after haploidentical transplantation. J. Clin. Oncol. 34, 1855–1863 (2016).

    • Gooley, T. A. et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 363, 2091–2101 (2010)

    • Tomita, M. & Tsumoto, K. Hybridoma technologies for antibody production. Immunotherapy 3, 371–380 (2011).

    • Wierda, W. G. et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J. Clin. Oncol. 28, 1749–1755 (2010).

    • Hillmen, P. et al. Chlorambucil plus ofatumumab versus chlorambucil alone in previously untreated patients with chronic lymphocytic leukaemia (COMPLEMENT 1): a randomised, multicentre, open-label phase 3 trial. Lancet 385, 1873–1883 (2015)

    • Goede, V. et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N. Engl. J. Med. 370, 1101–1110 (2014).

    • Sehn, L. H. et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 17, 1081–1093 (2016)

    • Palumbo, A. et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med. 375, 754–766 (2016)

    • Cuesta-Mateos C, Alcaraz-Serna A, Somovilla-Crespo B, and Munoz-Calleja C. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage- Specific Targets. Front Immunol. 2017;8:1936 10.3389/fimmu.2017.01936 PMid: PMCid:PMC5776327 [PubMed: 29387053]

    • Shuai Dong, Irene M Ghobrial Immunotherapy for hematological malignancies J Life Sci (Westlake Village). 2019 June ; 1(1): 46–52.

    • Velasquez, M. P., Bonifant, C. L. & Gottschalk, S. Redirecting T cells to hematological malignancies with bispecific antibodies. Blood 131, 30–38 (2018).

    • Li, H., Er Saw, P. & Song, E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell. Mol. Immunol. 17, 451–461 (2020

    • Topp, M. S. et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J. Clin. Oncol. 29, 2493–2498 (2011).

    • Brown, P. A. et al. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA 325, 833–842 (2021).

    • Locatelli, F. et al. Effect of blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA 325, 843–854 (2021).

    • Goebeler, M. E. et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J. Clin. Oncol. 34, 1104–1111 (2016).

    • Viardot, A. et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood 127, 1410–1416 (2016)

    • Coyle, L. et al. Open-label, phase 2 study of blinatumomab as second salvage therapy in adults with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Leuk. Lymphoma 61, 2103–2112 (2020).

    • Katz, D. A. et al. Open-label, phase 2 study of blinatumomab after frontline R-chemotherapy in adults with newly diagnosed, high-risk DLBCL. Leuk. Lymphoma 63, 2063–2073 (202

    • Budde, L. E. et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 23, 1055–1065 (2022).

    • Hutchings, M. et al. Glofitamab, a novel, bivalent CD20-targeting T-cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: a phase I trial. J. Clin. Oncol. 39, 1959–1970 (2021).

    • Dickinson, M. J. et al. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 387, 2220–2231 (2022).

    • Hutchings, M. et al. Dose escalation of subcutaneous epcoritamab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an open-label, phase 1/2 study. Lancet 398, 1157–1169 (2021)

    • Krishnan, A. Y. et al. MajesTEC-7: a phase 3, randomized study of teclistamab plus daratumumab plus lenalidomide (Tec-DR) versus daratumumab plus lenalidomide plus dexamethasone (DRd) in patients with newly diagnosed multiple myeloma who are either ineligible or not intended for autologous stem cell transplant. Blood 140, 10148–10149 (2022) 47. Chari, A. et al. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N. Engl. J. Med. 387, 2232–2244 (2022)

    • Uy, G. L. et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 137, 751–762 (2021).).

    • Boyiadzis, M. et al. First-in-human study of JNJ-63709178, a CD123/CD3 targeting antibody, in relapsed/refractory acute myeloid leukemia. Clin. Transl. Sci. 16, 429–435 (2023).

    • 6. Pro, B. et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190–2196 (2012).

    • Younes, A. et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol. 30, 2183–2189 (2012).

    • Lamb, Y. N. Inotuzumab ozogamicin: firstg global approval. Drugs 77, 1603–1610 (2017).

    • Mori, J., Tsuda, K. & Tanimoto, T. Inotuzumab ozogamicin for acute lymphoblastic leukemia. N. Engl. J. Med. 375, 2100 (2016

    • Stein, E. M. et al. A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia. Blood 131, 387–396 (2018).

    • Leong, S., Lam, H. P. J., Kirkham, Z. & Popat, R. Antibody drug conjugates for the treatment of multiple myeloma. Am. J. Hematol. 98, S22–s34 (2023)

    • Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

    • Younes, A. et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 17, 1283–1294 (2016).

    • Schnorfeil, F. M. et al. T cells are functionally not impaired in AML: increased PD1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J. Hematol. Oncol. 8, 93 (2015).

    • Armand, P. et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J. Clin. Oncol. 31, 4199–4206 (2013).

    • Green, M. R. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116, 3268–3277 (2010).

    • Roemer, M. G. et al. PD-L1 and PD-L2 genetic alterations define classical hodgkin lymphoma and predict outcome. J. Clin. Oncol. 34, 2690–2697 (2016).

    • Merryman, R. W., Armand, P., Wright, K. T. & Rodig, S. J. Checkpoint blockade in Hodgkin and non-Hodgkin lymphoma. Blood Adv. 1, 2643–2654 (2017).

    • Bashey, A. et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood 113, 1581–1588 (2009).

    • Ansell, S. M. et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res. 15, 6446–6453 (2009).

    • Diefenbach, C. S. et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol. 7, e660–e670 (2020).

    • Mehta, A. et al. Lemzoparlimab, a differentiated anti-CD47 antibody in combination with rituximab in relapsed and refractory non- Hodgkin’s lymphoma: initial clinical results. Blood 138, 3542 (2021).

    • Qi, J. Y. et al. A phase I/IIa study of lemzoparlimab, a monoclonal antibody targeting CD47, in patients with relapsed and/or refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS): initial phase I results. Blood 136, 30–31 (2020).

    • Stadtmauer, E. et al. Lemzoparlimab (TJ011133), an anti-CD47 antibody, with/ without dexamethasone plus anti myeloma regimens for relapsed/refractory multiple myeloma: a phase 1b dose escalation and expansion study. J. Immunother. Cancer 9, A476 (2021).

    • Garcia-Manero, G. et al. Evorpacept (ALX148), a CD47-blocking myeloid checkpoint inhibitor, in combination with azacitidine: a phase 1 / 2 study in patients with myelodysplastic syndrome (ASPEN-02). Blood 138, 2601 (2021).

    • Srivastava S, Riddell SR. Chimeric antigen receptor T cell therapy: challenges to bench-tobedside efficacy. J Immunol. 2018; 200: 459-68.

    • Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014; 371: 1507-17.

    • Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young

    • Salter AI, Pont MJ, Riddell SR. Chimeric antigen receptormodified T cells: CD19 and the road beyond. Blood. 2018; 131: 2621-9.

    • Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015; 7: 303ra139.

    • Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017; 377: 2531-44.

    • Lesch S, Benmebarek MR, Cadilha BL, Stoiber S, Subklewe M, Endres S, et al. Determinants of response and resistance to CAR T cell therapy. Semin Cancer Biol. 2020; 65: 80-90.

    • Ormhoj M, Scarfo I, Cabral ML, Bailey SR, Lorrey SJ, Bouffard AA, et al. Chimeric antigen receptor T cells targeting CD79b show efficacy in lymphoma with or without cotargeting CD19. Clin Cancer Res. 2019; 25: 7046-57.

    • Hosen N. Chimeric antigen receptor T-cell therapy for multiple myeloma. Cancers (Basel). 2019; 11: 2024.

    • Rodriguez-Lobato LG, Ganzetti M, Fernandez de Larrea C, Hudecek M, Einsele H, Danhof S. CAR T-cells in multiple myeloma: state of the art and future directions. Front Oncol. 2020; 10: 1243

    • Fleischer LC, Spencer HT, Raikar SS. Targeting T cell malignancies using CAR-based immunotherapy: challenges and potential solutions. J Hematol Oncol. 2019; 12: 141.

    • Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH, et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood. 2017; 130: 285-96

    • Mardiana S, Gill S. CAR T cells for acute myeloid leukemia: state of the art and future directions. Front Oncol. 2020; 10: 697.

    • Pao, S. C., Chu, M. T. & Hung, S. I. Therapeutic vaccines targeting neoantigens to induce T-cell immunity against cancers. Pharmaceutics 14, 867 (2022).

    • Keilholz, U. et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113, 6541–6548 (2009).

    • Van Tendeloo, V. F. et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl Acad. Sci. USA. 107, 13824–13829 (2010).

    Share This Chapter!