The Effect of Climate Change on Plant Parasitic Nematodes
Tolga Gurkan (Author), Betul Gurkan (Author)
Release Date: 2024-06-17
Climate change is defined as permanent changes in the Earth’s weather conditions, such as temperature, precipitation, and wind. The main impacts of climate change include global warming, increase in weather events, sea level rise, damage to ecosystems, melting of glaciers, negative impacts on agriculture, water resources and human health. The biology and physiology of plant [...]
Media Type
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Climate Change and Future of Agriculture |
First Page | 191 |
Last Page | 204 |
DOI | https://doi.org/10.69860/nobel.9786053359449.12 |
Page Count | 14 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Tolga Gurkan (Author)
Assistant Professor, Kilis 7 Aralık University
https://orcid.org/0000-0003-0839-6559
Betul Gurkan (Author)
PhD, Agriculture Engineer, East Mediterranean Transitional Zone Agricultural Research of Institute
https://orcid.org/0000-0003-0195-4562
Dutta T. K., Phani V. 2023. The pervasive impact of global climate change on plant-nematode interaction continuum. Frontiers in Plant Science. 14:1143889.
Siegenthaler U., Stocker T. F., Monnin E., Luthi D., Schwander J., Stauffer B., Raynaud D., Barnola J. M., Fischer H., Masson-Delmotte V., Jouzel J. 2005. Stable carbon cycle-climate relationship during the late pleistocene. Science, v. 310, 1313-1317.
Canadell J. G., Le quere C., Raupach M. R., Field C. B., Buitenhuis E. T., Ciais P., Conway T. J., Gillett N. P., Houghton R. A., Marland G. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, v.104, p.1866-18870.
IPCC 2007. IPCC Fourth Assessment Report (AR4). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC), Geneva, Switzerland.
Raven J. A., Karley A. J. 2006. Carbon Sequestration: Photosynthesis and Subsequent Processes. Current Biology 16: 165-167.
Hansen J., Sato M., Ruedy R., Lo K., Lea D. W. and Medinaelizade M. 2006. Global temperature change. Proceedings of the National Academy of Sciences 103: 14288-14293.
Dai A., Trenberth K. E., Qian T. 2004. A global dataset of palmer drought severity index for 1870-2002: relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5, 1117–1130.
Spinoni J., Naumann G., Carrao H., Barbosa P., Vogt J. 2014. World drought frequency, duration, and severity for 1951-2010. Int. J. Climatol. 34, 2792–2804.
Chen H., Sun J. 2017. Anthropogenic warming has caused hot droughts more frequently in China. J. Hydrol. 544, 306–318.
Tolle M. H., Moseley C., Panferov O., Busch G., Knohl A. 2013. Water supply patterns over Germany under climate change conditions. Biogeosciences 10, 2959–2972.
Hasegawa T., Sakurai G., Fujimori S., Takahashi K., Hijioka Y., Masui T. 2021. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2, 587–595.
Sohlenius B. 1980. Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos 34: 186-194.
Bardgett R. D., van der Putten, W. H. 2014. Belowground biodiversity and ecosystem functioning Nature, 515. 505-511.
Van den Hoogen J., Geisen S., Routh D., Ferris H., Traunspurger W., Wardle D. A. 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198.
Xiao H. F., Wang W. T., Xia S. W. Li Z. P., Gan J. M., Yang X. D. 2021. Distributional patterns of soil nematodes in relation to environmental variables in forest ecosystems Soil Ecol Lett, 3. 115-124.
Li S., Song M., Jing S. 2021. Effects of different carbon inputs on soil nematode abundance and community composition. Appl. Soil Ecol. 163, 103915.
Yin R., Eisenhauer N., Auge H., Purahong W., Schmidt A., Schadler M. 2019. Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biol. Biochem. 131, 141–148.
Jones J. T., Haegeman A., Danchin E. G. J., Gaur H. S., Helder J., Jones M. G. K., Kikuchi T. 2013. Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14, 946–961.
Ebone L. A., Kovaleski M., Deuner C. C. 2019. Review Article Nematicides: History, mode, and mechanism action. Plant Sci. Today. 6, 91–97.
Eves-van den Akker S. 2021. Plant–nematode interactions. Curr. Opin. Plant Biol. 62, 102035.
Siddique S., Coomer A., Baum T., Williamson V. M. 2022. Recognition and response in plant–nematode interactions. Annual Review. Phytopathology. 60, 143–162.
Khan M. W. 1993. Nematode interactions (Dordrecht: Springer Science & Business Media).
Elling A. A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology 103, 1092–1102.
Jones J. T., Haegeman A., Danchin E. G., Gaur H. S., Helder J., Jones M. G. 2013. Top 10 plant parasitic nematodes in molecular plant pathology. Mol. Plant Pathology. 14, 946–961.
Phani V., Khan M. R., Dutta T. K. 2021. Plant-parasitic nematodes as a potential threat to protected agriculture: current status and management options. Crop Protection. 144, 105573.
Liu W., Park S. W. 2018. Underground mystery: interactions between plant roots and parasitic nematodes. Curr. Plant Biol. 15, 25–29.
Rhoades H. L. 1982. Effect of temperature on survival of Meloidogyne incognita in flooded and fallow muck soil. Nematropica 1, 33–37.
Bridge J. 1996. Nematode management in sustainable and subsistence agriculture. Annu. Rev. Phytopathology. 34, 201–225.
Sikora R. A., Bridge J., Starr J. L. 2005. “Management practices: an overview of integrated nematode management technologies,” in Plant parasitic nematodes in subtropical and tropical agriculture. Eds. R. A. Sikora, D. Coyne, J. Hallmann and P. Timper (Cambridge: CABI), 793–825.
Chen P., Tsay T. 2006. Effect of crop rotation on Meloidogyne spp. and Pratylenchus spp. populations in strawberry fields in Taiwan. Journal of Nematology. 38, 339–344.
Neher D. A. 2001. Role of nematodes in soil health and their use as indicators. Journal Nematology. 33, 161–168.
Tu C., Koenning S. R., Hu S. 2003. Root-parasitic nematodes enhance soil microbial activities and nitrogen mineralization. Microb. Ecol. 46, 134–144.
Topalovic O., Hussain M., Heuer H. 2020. Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Front. Microbiol. 11.
Hedenec P., JiméNez J. J., Moradi J., Domene X., Hackenberger D., Barot S. 2022. Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Sci. Rep. 12, 17362.
Zhang X. K., Liang W. J., Li Q. 2018. Recent progress and future directions of soil nematode ecology in China. Biodivers. Sci. 26, 1060–1073.
Ferris H. 2010. Contribution of nematodes to the structure and function of the soil food web. J. Nematol. 2010; 42: 63-67.
N., Prasad J. S., Ganguly A. K. 2010. Impact of Climate Change on Soil Nematodes-Implications for Sustainable Agriculture. Indian Journal of Nematology. Vol 40, No 2, 125-134.
Bongers T. 1990. The maturity index-an ecological measure of environmental disturbance based on nematode species composition Oecologia,83. 14-19.
Ferris H., Bongers T., Goede, R. G. M. D. 2001. Goede A framework for soil food web diagnostics: extension of the nematode faunal analysis concept Appl. Soil Ecol., 18. 13-29.
Yeates G.W., Newton P. C. D., Ross D. J. 2003. Significant changes in soil microfauna in grazed pasture under elevated carbon dioxide. Biology & Fertility of Soils 38: 319-326.
Zhang W. X., Fu S. L. 2021. Special issue on the biodiversity and ecological functions of soil fauna Soil Ecol Lett, 3. 83.
Evans A. F., Perry R. N. 2009. “Survival mechanisms,” in Root-knot nematodes. Eds. R. N. Perry, M. Moens and J. L. Starr (Wallingford: CABI), 201–219.
Mateille T., Tavoillot J., Martiny B., Dmowska E., Winiszewska G., Ferji Z., Msanda F., Mousadik A. E. 2016. Aridity or low temperatures: what affects the diversity of plant-parasitic nematode communities in the Moroccan argan relic forest? Appl. Soil Ecol. 101, 64–71.
Namu J., Karuri H., Alakonya A., Nyaga J., Njeri E. 2018. Distribution of parasitic nematodes in Kenyan rice fields and their relation to edaphic factors, rainfall and temperature. Trop. Plant Pathol. 43, 128–137.
Tzortzakakis E. A., Trudgill D. L. 2005. A comparative study of the thermal time requirements for embryogenesis in Meloidogyne javanica and M. incognita. Nematology 7, 313–315.
Li C., Lang Q., Zhang F., Zhao D., Liu H., Zhou J. 2020. Study on the integrated system of prediction of the range of volcanic collapse in Changbai Mountain. IOP Conf. Ser. Earth Environ. Sci. 558, 032017.
Colagiero M., Ciancio A. 2012. Climate changes and nematodes: expected effects and perspectives for plant protection. Redia 94, 113–118.
Kandel S. L., Smiley R. W., Garland-Campbell K., Elling A. A., Abatzoglou J., Huggins D. 2013. Relationship between climatic factors and distribution of pratylenchus spp. in the dryland wheat-production areas of eastern Washington. Plant Dis. 97, 1448–1456.
Mueller K. E., Blumenthal D. M., Carrillo Y., Cesarz S., Ciobanu M., Hines J. 2016. Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland. Soil Biol. Biochem. 103, 46–51.
Rosenzweig C., Iglesias A., Yang X. B., Epstein P. R. Chivian E. 2000. Implications of Climate Change for U.S. Agriculture: Extreme Weather Events, Plant Diseases, and Pests. Cambridge, Massachusetts: Center for Health and the Global Environment, Harvard Medical School. Cambridge, MA. pp. 56.
Boland G. J., Melzer M. S., Hopkin A., Higgins V., Nassuth A. 2004. Climate change and plant diseases in Ontario. Can. J. Plant Pathol. 26, 335–350.
Ghini R., Hamada E., Pedro Júnior M. J., Marengo J. A., Gonçalves R. R. V. 2008. Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesqui. Agropecu. Bras. 43, 187–194.
Ruess L., Michelsen A., Schmidt I. K., Jonasson S. 1999. Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils. Plant Soil 212, 63–73.
Davidson E. A., Janssens I. A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173.
Kardol P., Cregger M. A., Campany C. E., Classen A. T. 2010. Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91, 767–781.
Somasekhar N., Prasad J. S. 2012. “Plant–nematode interactions: consequences of climate change,” in Crop stress and its management: perspectives and strategies. Eds. B. Venkateswarlu, A. K. Shanker, C. Shanker and M. Maheswari (Dordrecht: Springer), 547–564.
Nielsen U. N., Ayres E., Wall D. H., Li G., Bardgett R. D., Wu T., Garey J. R. 2014. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978.
Thakur M. P., Reich P. B., Hobbie S. E., Stefanski A., Rich R., Rice K. E., Eddy W. C., Eisenhauer N. 2018. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Chang. 8, 75–78.
Wang J., Hasegawa T., Li L., Lam S. K., Zhang X., Liu X., Pan G. 2019. Changes in grain protein and amino acids composition of wheat and rice under short term increased [CO2] and temperature of canopy air in a paddy from East China. New Phytol. 222, 726–734.
Nisa R. U., Tantray A. Y., Kouser N., Allie K. A., Wani S. M., Alamri S. A. 2021. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi. J. Biol. Sci. 28, 3049–3059.
Taylor D. P. 1962. Effects of temperature on hatching of Aphelenchus avenae eggs. Proc. Helminthol. Soc. Wash. 29, 52–54.
Crofton H. D., Whitlock J. H., Glazer R. A. 1965. Ecology and biological plasticity of sheep nematodes. Il. Genetic x environmental plasticity in Haemonchus contortus (Rud, 1803). Cornell Vet. 55, 251–257.
Trudgill D. L. 1995. An assessment of the relevance of thermal time relationships to nematology. Fundam. Appl. Nematol. 18, 407–417.
Linford M. B., Oliveira J. M. 1940. Rotylenchulus reniformis, nov. gen. n. sp., a nematode parasite of roots. Proc. Helminthol. Soc. Wash.7, 35–42.
Tietjen J. H., Lee J. J. 1972. Life cycles of marine nematodes. Oecologia 10, 167–176.
Adams H. S., Osborne W. W., Webber Jr. A. J. 1982. Effect of temperature on development and reproduction of Globodera solanacearum (Osborne’s cyst nematode, tobacco pest, Virginia). Nematropica, 12, 305–311.
Okada H., Ferris H. 2001. Effect of temperature on growth and nitrogen mineralization of fungi and fungal-feeding nematodes. Plant Soil 234, 253–262.
Velloso J. A., Maquilan M. A. D., Campos V. P., Brito J. A., Dickson D. W. 2022. Temperature effects on development of Meloidogyne enterolobii and M. floridensis. J. Nematol. 54, 1–11.
Khanal C., Land J. 2023. Study on two nematode species suggests climate change will inflict greater crop damage. Sci Rep 13, 14185.
Neilson R., Boag B. 1996. The predicted impact of possible climatic change on virus-vector nematodes in great Britain. Eur. J. Plant Pathol. 102, 193–199.
Yeates G. W., Newton P. C. D. 2009. Long term changes in top soil nematode populations in grazed pasture under elevated atmospheric carbon dioxide. Biol. Fertil. Soils. 45, 799–808.
Maleita C., Curtis R., Abrantes I. 2012. Thermal requirements for the embryonic development and life cycle of Meloidogyne hispanica. Plant Pathol. 61, 1002–1010.
Wu J., Chen H., Zhang Y. 2016. Latitudinal variation in nematode diversity and ecological roles along the Chinese coast. Ecol. Evol. 6, 8018–8027.
St-Marseille A. F., Bourgeois G., Brodeur J., Mimee B. 2019. Simulating the impacts of climate change on soybean cyst nematode and the distribution of soybean. Agric. For. Meteorol. 264, 178–187.
Guo X., Endler A., Poll C., Marhan S., and Ruess L. 2021. Independent effects of warming and altered precipitation pattern on nematode community structure in an arable field. Agric. Ecosyst. Environ. 316, 107467.
Klusmann C., Cesarz S., Ciobanu M., Ferlian O., Jochum M., Schädler M. 2022. Climate-change effects on the sex ratio of free-living soil nematodes – perspective and prospect. Soil Org. 94, 15–28.
Tyler J. 1933. Development of the root-knot nematode as affected by temperature. Hilgardia 7, 389–415.
Carter T. R., Saarikko R. A., Niemi K. J. 1996. Assessing the risks and uncertainties of regional crop potential under a changing climate in Finland. Agric. Food Sci. Finl. 5, 329–350.
Preston J. F., Dickson D. W., Maruniak J. E., Nong G., Brito J. A., Schmidt L. M. 2003. Pasteuria spp.: systematics and phylogeny of these bacterial parasites of phytopathogenic nematodes. Journal Nematology. 35, 198–207.
Rafaluk-Mohr C., Ashby B., Dahan D. A., King K. C. 2018. Mutual fitness benefits arise during coevolution in a nematode-defensive microbe model. Evol. Lett. 2, 246–256.
Freitas L. G., Mitchell D. J., Dickson D. W. 1997. Temperature effects on the attachment of Pasteuria penetrans endospores to Meloidogyne arenaria race 1. J. Nematology. 29, 547–555.
Hirata A., Nakamura K., Nakao K., Kominami Y., Tanaka N., Ohashi H. 2017. Potential distribution of pine wilt disease under future climate change scenarios. PloS One 12, e0182837.
Li H., Xing L., Liu X., Pu Y., Yang Y., Fu Y. 2022. Potential impact of climate change on the distribution of the pinewood nematode Bursaphelenchus xylophilus in chongqing, China. Pakistan J. Zool. 54, 809–816.
Sticht C., Schrader S., Giesemann A., Weigel H. J. 2009. Sensitivity of nematode feeding types in arable soil to free air CO 2 enrichment (FACE) is crop specifi c. Pedobiologia 52:337–349.
Yeates G.W., Tate K.R., Newton, P. C. D. 1997. Response of the fauna of a grassland soil to doubling of atmospheric carbon dioxide concentration. Biology & Fertility of Soils 25: 307-315.
Li Q., Liang W. J., Jiang Y., Neher D. A. 2007. Effect of elevated CO2 and N fertilization on soil nematode abundance and diversity in wheat field. Applied Soil Ecology 36: 63-69.
Yeates G. W., Newton P. C. D., Ross D. J. 1999. Response of soil nematode fauna to naturally elevated CO2 levels influenced by soil pattern. Nematology 1, 285–293.
Somasekhar N., Prasad J. S. 2010. Nematological considerations in addressing impact of climate change on agriculture. Proceedings of National Symposium on Innovations in Nematological Research, Feb. 22-24, Tamilnadu Agricultural Univesrity, Coimbatore
Eisenhauer N., Cesarz S., Koller R., Worm K., Reich P. B. 2012. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Chang. Biol. 18, 435–447.
Niklaus P.A., Alphei J., Ebersberger D., Kampichler C., Kandeler E., Tscherko D. 2003. Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grasslands. Global Change Biology 9: 585-600.
Sonnemann I., Wolters V. 2005. The micro-food web of grassland soils respond to a moderate increase in atmospheric CO2. Global Change Biology 11: 1148-1155.
Glick B. R. 2020. Beneficial Plant-Bacterial Interactions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 383.
Prasad J. S., Somasekhar N. 2009. Nematode pest of rice: Diagnosis and management. Technical bulletin no. 38, directorate of rice research (ICAR). (Hyderabad, India: ICAR-Directorate of Rice Research), 29.
Blankinship J. C., Niklaus P. A., Hungate B. A. 2011. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565.
Schwarz B., Barnes A. D., Thakur M. P., Brose U., Ciobanu M., Reich P. B., Rich R. L., Rosenbaum B., Stefanski A., Eisenhauer N. 2017. Warming alters the energetic structure and function but not resilience of soil food webs. Nat. Clim. Chang. 7, 895–900..
Wilschut R. A., Geisen S., Martens H., Kostenko O., de Hollander M., ten Hooven F. C., Weser C., Snoek L. B., Bloem J., Cakovi´c D., ˇCelik T., Koorem K., Krigas N., Manrubia M., Ramirez K. S., Tsiafouli M. A., Vreˇs B., van der Putten W. H. 2019. Latitudinal variation in soil nematode communities under climate warming-related range-expanding and native plants. Glob. Chang. Biol. 25, 2714–2726.
Perry R. N., Wharton D. A. 2011. Molecular and Physiological Basis of Nematode Survival. CABI Publishing, Wallingford, UK.
Yeates G., Wardle D., Watson R. 1999. Responses of soil nematode populations, community structure, diversity and temporal variability to agriculturalintensification over a seven-year period. Soil Biol Biochem 31:1721–1733.
Guogang Z., Xin S., Yang L., Jia M., Wang Z., Han G. 2020. The response of soil nematode fauna to climate drying and warming in Stipa breviflora desert steppe in inner Mongolia, China. J. Soils. Sediments. 20, 2166–2180.
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |