Release Date: 2024-05-28

Clinical Diagnosis of Alzheimer’s Disease

Release Date: 2024-05-28

This chapter delves into the diagnostic process of Alzheimer’s disease, emphasizing the various limitations and challenges in achieving accurate diagnoses. It begins by reviewing the traditional diagnostic criteria, which typically include clinical assessments, cognitive tests, and evaluation of medical history. These methods, while foundational, often present challenges in distinguishing Alzheimer’s from other forms of dementia, [...]

Media Type
  • PDF

Buy from

Price may vary by retailers

Work TypeBook Chapter
Published inAlzheimer’s Disease From Molecular Mechanisms to Clinical Practices
First Page109
Last Page134
DOIhttps://doi.org/10.69860/nobel.9786053359166.5
ISBN978-605-335-916-6 (PDF)
LanguageENG
Page Count26
Copyright HolderNobel Tıp Kitabevleri
Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
This chapter delves into the diagnostic process of Alzheimer’s disease, emphasizing the various limitations and challenges in achieving accurate diagnoses. It begins by reviewing the traditional diagnostic criteria, which typically include clinical assessments, cognitive tests, and evaluation of medical history. These methods, while foundational, often present challenges in distinguishing Alzheimer’s from other forms of dementia, especially in the early stages of the disease. The section then explores the latest advancements in clinical assessment tools that have significantly enhanced diagnostic accuracy. Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scans are highlighted for their ability to detect structural and functional changes in the brain associated with Alzheimer’s. MRI scans provide detailed images of brain anatomy, allowing for the identification of atrophy in specific brain regions, while PET scans can measure metabolic activity and detect amyloid plaques and tau tangles, which are hallmark features of Alzheimer’s pathology. In summary, this chapter provides a comprehensive overview of the diagnostic process for Alzheimer’s disease, highlighting both traditional methods and cutting-edge advancements. It underscores the importance of integrating multiple diagnostic tools to improve accuracy and discusses how recent discoveries in genomics are paving the way for early detection and personalized medicine in the fight against Alzheimer’s.

Zeynep Ece Kaya Gulec (Author)
Istanbul Cerrahpasa University
https://orcid.org/0000-0002-3237-2111
3Dr. Zeynep Ece Kaya Güleç received her medical degree from Istanbul University, Cerrahpaşa School of Medicine in 2015. She began her neurology residency in 2016 and conducted research on spinocerebellar ataxia type 2 animal models at Goethe University in 2018 under the supervision of Prof. Georg Auburger. In 2021, she completed her neurology residency at Istanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine. After working as a neurologist for 2 years, she has been pursuing her PhD in Molecular Neurobiology and Neuroanatomy at Istanbul University-Cerrahpaşa, Institute of Neurological Sciences since 2022. She obtained the Turkish Board of Neurology fellowship in 2019 and the European Board of Neurology fellowship in 2021. Her research interests focus on molecular mechanisms, biomarkers of cognitive and movement disorders, and neurogenetics. She is a member of the European Academy of Neurology, International Parkinson and Movement Disorder Society, Turkish Neurological Society, Turkish Epilepsy Society, and Turkish Parkinson’s Disease Society.

Melda Bozluolcay (Author)
Professor, Biruni University
https://orcid.org/0000-0002-3501-5160

  • Wu YT, Beiser AS, Breteler MMB, Fratiglioni L, Helmer C, Hendrie HC et al. The changing prevalence and incidence of dementia over time- current evidence. Nature reviews. Neurology.2017; 13(6): 327–339.

  • 2018 Alzheimer's disease facts and figures. Alzheimers Dement. 2018; 14(3): 367-429.

  • 2023 Alzheimer's disease facts and figures. Alzheimers Dement. 2023;19(4):1598-1695.

  • Van der Lee SJ, Wolters FJ, Ikram MK, Hofman A, Ikram MA, Amin N. The effect of APOE and other common genetic variants on the onset of Alzheimer's disease and dementia: a community-based cohort study: Lancet Neurol. 2018;17(5):434-444.

  • McDade EM. Alzheimer Disease. Continuum (Minneap Minn). 2022;28(3):648-675.

  • Karch CM, Cruchaga C, Goate AM. Alzheimer's disease genetics: from the bench to the clinic. Neuron. 2014;83(1):11-26.

  • Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC et al. Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES). Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing: 2019 Sep;51(9):1423-1424]. Nat Genet. 2019;51(3):414-430.

  • Guerreiro R, Brás J, Hardy J. SnapShot: genetics of Alzheimer's disease. Cell. 2013;155(4):968-968.e1.

  • Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging. 2006;27(2):190-198.

  • Arvanitakis Z, Leurgans SE, Wang Z, Wilson RS, Bennett DA, Schneider JA. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol. 2011;69(2):320-327.

  • Lu FP, Lin KP, Kuo HK. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One. 2009;4(1):e4144.

  • Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, et al. Glucose levels and risk of dementia [published correction appears in N Engl J Med. 2013;369(15):1476]. N Engl J Med. 2013;369(6):540-548.

  • Kivipelto M, Helkala EL, Laakso MP, Hänninen T, Hallikainen M, Alhainen K et al. Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population-based study: BMJ. 2001;322(7300):1447-1451.

  • Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, White LR. Antihypertensive medication uses and risk of cognitive impairment: the Honolulu-Asia Aging Study. Neurology. 2013;81(10):888-895.

  • Yasar S, Xia J, Yao W, Furberg CD, Xue QL, Mercado CI et al. Ginkgo Evaluation of Memory (GEM) Study Investigators Antihypertensive drugs decrease risk of Alzheimer’s disease: Ginkgo Evaluation of Memory Study: Neurology. 2013; 81(10): 896–903.

  • Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia: The Lancet. Neurology. 2005 4(8): 487–499.

  • SPRINT MIND Investigators for the SPRINT Research Group, Williamson JD, Pajewski NM, Auchus AP, Bryan RN, Chelune G, Cheung AK et al. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial: JAMA. 2019; 321(6): 553–561.

  • Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry. 2003;74(7):857-862.

  • Franz G, Beer R, Kampfl A, Engelhardt K, Schmutzhard E, Ulmer H et al. Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology. 2003;60(9):1457-1461.

  • Koponen S, Taiminen T, Kairisto V, Portin R, Isoniemi H, Hinkka S et al.APOE-epsilon4 predicts dementia but not other psychiatric disorders after traumatic brain injury: Neurology. 2004; 63(4): 749–750.

  • Ju YS, Ooms SJ, Sutphen C, Macauley SL, Zangrilli MA, Jerome G et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels: Brain: J Neurolog.2017; 140(8): 2104–2111.

  • Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju YS. Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease: JAMA. 2018; 75(5): 582–590.

  • Bubu OM, Pirraglia E, Andrade AG, Sharma RA, Gimenez-Badia S, Umasabor-Bubu OQ. Alzheimer’s Disease Neuroimaging Initiative: Obstructive sleep apnea and longitudinal Alzheimer's disease biomarker changes: Sleep. 2019; 2(6): zsz048.

  • Ju YS, Zangrilli MA, Finn MB, Fagan AM, Holtzman DM. Obstructive sleep apnea treatment, slow wave activity, and amyloid-β. Ann Neurol. 2019;85(2):291-295.

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al. Sleep drives metabolite clearance from the adult brain: Science. 2013; 342 : 373–377.

  • Beschorner N, Nedergaard M. Glymphatic system dysfunction in neurodegenerative diseases: Current opinion in neurology, 2024 ; 37(2): 182–188.

  • Anstey KJ, von Sanden C, Salim A, O'Kearney R.Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies: Am. J Epidemiolgy.2007; 166(4): 367–378.

  • Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8(11):1006-1018.

  • Hong CH, Falvey C, Harris TB, Simonsick EM, Satterfield S, Ferrucci L et al. Anemia and risk of dementia in older adults: findings from the Health ABC study: Neurology.2013; 81(6): 528–533.

  • Yu JT, Xu W, Tan CC, Andrieu S, Suckling J, Evangelou E et al. Evidence-based prevention of Alzheimer's disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry. 2020;91(11):1201-1209.

  • Kwok MK, Schooling CM. Herpes simplex virus and Alzheimer's disease: a Mendelian randomization study: Neurobiol Aging. 2021; 99:101. e11-101.e13.

  • Tzeng NS, Chung CH, Lin FH, Chiang CP, Yeh CB, Huang S et al. Anti-herpetic Medications and Reduced Risk of Dementia in Patients with Herpes Simplex Virus Infections-a Nationwide, Population-Based Cohort Study in Taiwan. Neurotherapeutics. 2018;15(2):417-429.

  • Lopatko Lindman K, Hemmingsson ES, Weidung B, Brännström J, Josefsson M, Olsson J, et al. Herpesvirus infections, antiviral treatment, and the risk of dementia-a registry-based cohort study in Sweden. Alzheimers Dement (N Y). 2021;7(1): e12119.

  • Zhang MY, Katzman R, Salmon D, Jin H, Cai GJ, Wang ZY et al. The prevalence of dementia and Alzheimer's disease in Shanghai, China: impact of age, gender, and education. Ann Neurol. 1990;27(4):428-437.

  • Qiu C, Bäckman L, Winblad B, Agüero-Torres H, Fratiglioni L. The influence of education on clinically diagnosed dementia incidence and mortality data from the Kungsholmen Project: Arch Neurol. 2001;58 (12):2034-2039.

  • Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux, R. Influence of education and occupation on the incidence of Alzheimer's disease: JAMA. 1994; 271(13): 1004–1010.

  • Stern Y. Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurol. 2012;11(11):1006-1012.

  • Snowdon DA, Kemper SJ, Mortimer JA, Greiner LH, Wekstein DR, Markesbery WR. Linguistic ability in early life and cognitive function and Alzheimer's disease in late life. Findings from the Nun Study: JAMA. 1996; 275(7): 528–532.

  • Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment: Cochrane Database Syst Rev. 2008; (3):CD005381

  • Yaffe K, Barnes D, Nevitt M, Lui LY, Covinsky K. A prospective study of physical activity and cognitive decline in elderly women: women who walk: Arch Intern Med. 2001;161(14):1703-1708.

  • Weuve J, Kang JH, Manson JE, Breteler MM, Ware JH, Grodstein F. Physical activity, including walking, and cognitive function in older women: JAMA. 2004; 292(12): 1454–1461.

  • Geda YE, Roberts RO, Knopman DS, Christianson TJ, Pankratz VS, Ivnik RJ et al. Physical exercise, aging, and mild cognitive impairment: a population-based study: Arch Neurol. 2010;67(1):80-86.

  • Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L et al. Exercise training increases size of hippocampus and improves memory: Proc Natl Acad Sci U S A. 2011;108(7):3017-3022.

  • Brown BM, Sohrabi HR, Taddei K, Gardener SL, Rainey-Smith SR, Peiffer JJ. Dominantly Inherited Alzheimer Network: Habitual exercise levels are associated with cerebral amyloid load in presymptomatic autosomal dominant Alzheimer's disease: Alzheimers Dement. 2017;13(11):1197-1206.

  • Mukamal KJ, Kuller LH, Fitzpatrick AL, Longstreth WT, Jr, Mittleman MA, Siscovick DS. Prospective study of alcohol consumption and risk of dementia in older adults: JAMA. 2003; 289(11): 1405–1413.

  • Luchsinger JA, Tang MX, Siddiqui M, Shea S, Mayeux R. Alcohol intake and risk of dementia. J Am Geriatr Soc. 2004;52(4):540-546.

  • Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, et al. Dietary fats and the risk of incident Alzheimer disease: Arch Neurol. 2003;60(2):194-200.

  • Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease: Arch Neurol. 2003;60(7):940-946.

  • Hodges JR, Patterson K. Is semantic memory consistently impaired early in the course of Alzheimer's disease? Neuroanatomical and diagnostic implications: Neuropsychologia. 1995; 33(4): 441–459.

  • Greene JD, Hodges JR, Baddeley AD. Autobiographical memory and executive function in early dementia of Alzheimer type: Neuropsychologia. 1995; 33(12): 1647–1670.

  • Eslinger PJ, Damasio AR. Preserved motor learning in Alzheimer's disease: implications for anatomy and behavior: J Neurosci. 1986;6(10):3006-3009.

  • Demichele-Sweet MA, Lopez OL, Sweet RA. Psychosis in Alzheimer's disease in the national Alzheimer's disease coordinating center uniform data set: clinical correlates and association with apolipoprotein e: International journal of Alzheimer's disease, 2011: 926597, 2011.

  • Scarmeas N, Brandt J, Albert M, Hadjigeorgiou G, Papadimitriou A, Dubois B, et al. Elusions and hallucinations are associated with worse outcome in Alzheimer disease. Arch Neurol. 2005;62(10):1601-1608.

  • Scarmeas N, Hadjigeorgiou GM, Papadimitriou A, Dubois B, Sarazin M, Brandt J, et al.Motor signs during the course of Alzheimer disease: Neurology. 2004; 63(6): 975–982.

  • Scarmeas N, Honig LS, Choi H, Cantero J, Brandt J, Blacker D, et al. Seizures in Alzheimer disease: who, when, and how common? : Arch Neurol. 2009;66(8):992-997.

  • Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, et al. Incidence and impact of subclinical epileptiform activity in Alzheimer's disease: Ann Neurol. 2016;80(6):858-870.

  • Beagle AJ, Darwish SM, Ranasinghe KG, La AL, Karageorgiou E, Vossel KA. Relative Incidence of Seizures and Myoclonus in Alzheimer's Disease, Dementia with Lewy Bodies, and Frontotemporal Dementia: J Alzheimers Dis. 2017;60(1):211-223.

  • Hiller AJ, Ishii, M. Disorders of Body Weight, Sleep and Circadian Rhythm as Manifestations of Hypothalamic Dysfunction in Alzheimer's Disease. Front Cell Neurosci. 2018; 12:471.

  • Ferman TJ, Smith GE, Boeve BF, Ivnik RJ, Petersen RC, Knopman D et al. DLB fluctuations: specific features that reliably differentiate DLB from AD and normal aging: Neurology. 2004; 62(2): 181–187.

  • Benson DF, Davis RJ, Snyder BD. Posterior cortical atrophy. Arch Neurol. 1988;45(7):789-793.

  • Crutch SJ, Lehmann M, Schott JM, Rabinovici GD, Rossor MN, Fox NC. Posterior cortical atrophy. Lancet Neurol. 2012;11(2):170-178.

  • Crutch SJ, Schott JM, Rabinovici GD, Murray M, Snowden JS, van der Flier WM. Alzheimer's Association ISTAART Atypical Alzheimer's Disease and Associated Syndromes Professional Interest Area: Consensus classification of posterior cortical atrophy. Alzheimers Dement. 2017;13(8):870-884.

  • Polsinelli AJ, Apostolova, LG. Atypical Alzheimer Disease Variants: Continuum (Minneapolis, Minn.). 2022; 28(3): 676–701.

  • Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BN, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis: JAMA. 2015; 313(19): 1939–1949.

  • Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants: Neurology. 2011; 76(11): 1006–1014.

  • Leyton CE, Ballard KJ, Piguet O, Hodges JR.Phonologic errors as a clinical marker of the logopenic variant of PPA. Neurology. 2014; 82(18): 1620–1627.

  • Howard D, Patterson K. The Pyramids and Palm Trees Test: a test for semantic access from words and pictures: Thames Valley Test Company, 1992.

  • Owens TE, Machulda MM, Duffy JR, Strand EA, Clark HM, Boland S, et al. Patterns of Neuropsychological Dysfunction and Cortical Volume Changes in Logopenic Aphasia. J Alzheimers Dis. 2018;66(3):1015-1025

  • Ramanan S, Roquet D, Goldberg ZL, Hodges JR, Piguet O, Irish M, et al. Establishing two principal dimensions of cognitive variation in logopenic progressive aphasia. Brain Commun. 2020;2(2): fcaa125.

  • Johnson JK, Head E, Kim R, Starr A, Cotman CW. Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol. 1999;56(10):1233-1239.

  • Blennerhassett R, Lillo P, Halliday GM, Hodges JR, Kril JJ. Distribution of pathology in frontal variant Alzheimer's disease. J Alzheimers Dis. 2014;39(1):63-70.

  • Woodward M, Brodaty H, Boundy K, Ames D, Blanch G, Balshaw R. Does executive impairment define a frontal variant of Alzheimer's disease?. Int Psychogeriatr. 2010;22(8):1280-1290.

  • Ossenkoppele R, Pijnenburg YA, Perry DC, Cohn-Sheehy BI, Scheltens NM, Vogel JW et al. The behavioural/ dysexecutive variant of Alzheimer's disease: clinical, neuroimaging and pathological features: Brain, 2015; 138 (Pt 9):2732-2749.

  • Townley RA, Graff-Radford J, Mantyh WG, Botha H, Polsinelli AJ, Przybelski SA, et al. Progressive dysexecutive syndrome due to Alzheimer's disease: a description of 55 cases and comparison to other phenotypes. Brain Commun. 2020;2(1):fcaa068.

  • Jones DT, Graff-Radford J, Lowe VJ, Wiste HJ, Gunter JL, Senjem ML, et al. Au, amyloid, and cascading network failure across the Alzheimer's disease spectrum. Cortex. 2017;97:143-159

  • Stopford CL, Thompson JC, Neary D, Richardson AM, Snowden JS. Working memory, attention, and executive function in Alzheimer's disease and frontotemporal dementia. Cortex. 2012;48(4):429-446.

  • Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC, et al. New insights into atypical Alzheimer's disease in the era of biomarkers. Lancet Neurol. 2021;20(3):222-234.

  • Forman MS, Farmer J, Johnson JK, Clark CM, Arnold SE, Coslett HB, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006;59(6):952-962.

  • Knopman DS, Boeve BF, Parisi JE, Dickson DW, Smith GE, Ivnik RJ, et al. Antemortem diagnosis of frontotemporal lobar degeneration. Ann Neurol. 2005;57(4):480-488.

  • Mendez MF, Karve SJ, Tassniyom K, Teng E, Shapira JS. Clinicopathologic differences among patients with behavioral variant frontotemporal dementia: Neurology. 2013; 80(6): 561–568.

  • Perry DC, Brown JA, Possin KL, Datta S, Trujillo A, Radke A, et al. Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain. 2017;140(12):3329-3345.

  • Boeve BF, Maraganore DM, Parisi JE, Ahlskog JE, Graff-Radford N, Caselli RJ et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration: Neurology. 1999; 53(4): 795–800.

  • Grimes DA, Bergeron CB, Lang AE. Motor neuron disease-inclusion dementia presenting as cortical-basal ganglionic degeneration. Mov Disord. 1999;14(4):674-680.

  • Lee SE, Rabinovici GD, Mayo MC, Wilson SM, Seeley WW, DeArmond SJ, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol. 2011;70(2):327-340.

  • Mathew R, Bak TH, Hodges JR. Diagnostic criteria for corticobasal syndrome: a comparative study. J Neurol Neurosurg Psychiatry. 2012;83(4):405-410.

  • Di Stefano F, Kas A, Habert MO, Decazes P, Lamari F, Lista S, et al. The phenotypical core of Alzheimer's disease-related and nonrelated variants of the corticobasal syndrome: A systematic clinical, neuropsychological, imaging, and biomarker study. Alzheimers Dement. 2016;12(7):786-795.

  • Hassan A, Whitwell JL, Josephs KA. The corticobasal syndrome-Alzheimer's disease conundrum. Expert Rev Neurother. 2011;11(11):1569-1578.

  • Pardini M, Huey ED, Spina S, Kreisl WC, Morbelli S, Wassermann EM, et al. FDG-PET patterns associated with underlying pathology in corticobasal syndrome. Neurology. 2019;92(10):e1121-e1135.

  • Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):270-279.

  • Albert MS. Cognitive and neurobiologic markers of early Alzheimer disease. Proc Natl Acad Sci U S A. 1996;93(24):13547-13551.

  • Breton A, Casey D, Arnaoutoglou NA. Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: Meta-analysis of diagnostic accuracy studies. Int J Geriatr Psychiatry. 2019;34(2):233-242.

  • Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D ,et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90(3):126-135.

  • Jack CR, Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):535-562.

  • Chételat G, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S et al. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias. Lanet Neurol. 2020;19(11):951-962.

  • Knopman DS, Jack CR, Jr, Lundt ES, Weigand SD, Vemuri P, Lowe VJ et al. Evolution of neurodegeneration-imaging biomarkers from clinically normal to dementia in the Alzheimer disease spectrum. Neurobiol Aging. 2016; 46:32-42.

  • Schröder J, Pantel J. Neuroimaging of hippocampal atrophy in early recognition of Alzheimer's disease--a critical appraisal after two decades of research. Psychiatry Res Neuroimaging. 2016; 247:71-78.

  • Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 2011;10(9):785-796.

  • Petersen C, Nolan AL, de Paula França Resende E, Miller Z, Ehrenberg AJ, Gorno-Tempini ML, et al. Alzheimer's disease clinical variants show distinct regional patterns of neurofibrillary tangle accumulation. Acta Neuropathol. 2019;138(4):597-612

  • Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, et al. Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurol. 2006;5(10):828-834.

Share This Chapter!