The Impact of Global Climate Change on Marine Zooplankton
Melisa Bozkurt (Author), Benin Toklu-Alicli (Author), Turgay Durmus (Author)
Release Date: 2024-05-31
Zooplanktonic organisms are vital components of marine ecosystems, playing significant roles in the carbon cycle. Zooplankton are primary consumers that transfer energy from phytoplankton to higher trophic levels, serving as a primary food source for economically important fish species. Their diversity, shaped by environmental factors, is crucial for maintaining ecosystem balance and productivity. Climate change [...]
Media Type
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Ecological Dynamics in the Face of Climate Change |
First Page | 119 |
Last Page | 131 |
DOI | https://doi.org/10.69860/nobel.9786053359258.8 |
Page Count | 13 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Melisa Bozkurt (Author)
Istanbul Universty
https://orcid.org/0000-0002-5730-6989
3Melisa BOZKURT is a PhD student in the Hydrobiology Program, Institute of Science, at Istanbul University. She completed her MSc at the same department about distribution of zooplanktonic organisms and effects on ecological parameters. Her research interests include marine biology, marine zooplankton and ecology.
Benin Toklu-Alicli (Author)
Assistant Professor, Istanbul Universty
https://orcid.org/0000-0002-9538-7396
3Benin TOKLU-ALICLI is a Assistant Professor in the Department of Biology, Faculty of Science, at Istanbul University. She completed her doctorate degree in 2006 from Çukurova University, Department of Fisheries with the distribution of zooplanktonic organisms in a gulf. Her research has focussed upon marine biology, marine zooplankton and biodiversity.
Turgay Durmus (Author)
Istanbul Universty
https://orcid.org/0000-0002-8242-1823
3Turgay DURMUS is a PhD lecturer in the Department of Biology, Faculty of Science, at Istanbul University. In 2021, he received a PhD in Hydrobiology from Istanbul University, focusing on the diversity of ciliates in a eutrophic estuary and their interactions with physicochemical parameters. His research interests include biodiversity of marine microzooplankton and phytoplankton, marine ecology, and molecular biology.
Geldiay R, Kocataş A. Deniz biyolojisine giriş. Ege Üniversitesi Yayınları, 1988, İzmir.
Shanks A L. Ecology of marine invertebrate larvae. 2020 pp 323-367
Özel İ. Planktonoloji I. Plankton ekolojisi ve araştırma yöntemleri. Ege Üniversitesi Su Ürünleri Yayınları, 1992, İzmir.
Calbet A. Mesozooplankton grazing effect on primary production: A global comparative analysis in marine ecosystems. Limnol Oceanogr, 2001;46, 1824–1830.
Dam H G, Roman M R. Youngbluth M.J. Downward export of respiratory carbon and dissolved inorganic nitrogen by diel migrant mesozooplankton at the JGOFS Bermuda timeseries station. Deep Sea Res 1 Oceanogr Res Pap, 1995;42, 1187–1197.
Calbet A. Saiz E. The ciliate‐copepod link in marine ecosystems. Aquat Microb Ecol, 2005; 38, 157–167.
Richardson A J. In hot water: zooplankton and climate change. ICES J Mar Sci, 2008; 65(3), 279–295.
Azani N. Ghaffar M A. Suhaimi H. et al. The impacts of climate change on plankton as live food: A review. IOP Conf Ser Earth Environ Sci, 2021; 869(2021)012005.
Slotwinski A. Coman F. Richardson A J. Introductory guide to zooplankton identification. Integrated Marine Observing System, 2014, Brisbane.
Boltovskoy D. Correa N. Boltovskoy A. Marine zooplanktonic diversity: a view from the South Atlantic. Oceanologica Acta, 2002; 25(5), 271-278.
Zhong Z. Marine planktonology. China Ocean Press, 1988.
Özel İ. Planktonoloji II. Denizel Zooplankton, Ege Üniversitesi Su Ürünleri Yayınları, 1996.
Huys R. Boxshall G A. Copepod evolution. The Ray Society, 1991;141, 595–605, London.
Parameswari E. Davamani V. Kalaiarasi R. Utilization of ostracods (Crustacea) as bioindicator for environmental pollutants. Int Res J Pure Appl Chem. 2020;21(7), 73–93.
Muñoz-Colmenares M E. Soria J M. Vicente E. Can zooplankton species be used as indicators of trophic status and ecological potential of reservoirs?, Aquatic Ecology, 2021;1143–1156.
Wang Y. G. Tseng L. C. Sun R. X. et al. Copepods as indicators of different water masses during the Northeast monsoon prevailing period in the northeast Taiwan. Biology, 2022;11(9), 1357.
Moldoveanu M. Timofte F. Signs of marine ecosystem rehabilitation along the Romanian Black Sea littoral identified by zooplankton indicator after 1994. Recherches Marines, 2004;35, 87–108.
Akın G. Küresel ısınma nedenleri ve sonuçları. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 2006;46(2), 29–43.
Serreze M C. Understanding recent climate change. Conservation Biology, 2009;24(1), 10–17.
Campbell N A. Reece J B. Biyoloji. Altıncı Baskıdan Çeviri. Palme Yayıncılık, 2008.
Bayraç H. Enerji kullanımının küresel ısınmaya etkisi ve önleyici politakalar. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 2010;11(2), 229–260.
Edemen M. Engin V. Boynukara E. et al. Küresel ısınma, küresel ısınmanın nedenleri ve sonuçları Dünya ve Türkiye üzerine olası etkileri. Uluslararası Sosyal ve Beşeri Bilimler Araştırma Dergisi, 2023;10(91), 37–48.
Copernicus ERA5 dataset of European Union. 2023. https://climate.copernicus.eu/global-climate-highlights-2023.
Sağlam N E. Düzgüneş E. Balık İ. Küresel ısınma ve iklim değişikliği. EgeJFAS, 2008;25(1), 89–94.
Appenzeller T. Dimick D.R. Signs from earth. Official Journal of National Geographic Society, 2004;206(3), 11–13.
Meteoroloji Genel Müdürlüğü 2024. https://www.mgm.gov.tr/iklim/iklim-degisikligi.aspx
Kadioğlu M. Sonu B H. Küresel iklim değişimi ve Türkiye. Güncel Yayıncılık AŞ, 2007 (110).
Aksay C S. Ketenoğlu O. Kurt L. Küresel ısınma ve iklim değişikliği. S Ü Fen Ed Fak Fen Derg, 2005;25, 29–41.
Lehodey P. Alheit J. Barange M. et al. Climate variability, fish, and fisheries. Journal of Climate, 2006;19(20), 5009–5030.
Stock C A. Pegion K. Vecchi G A. et al. Seasonal sea surface temperature anomaly prediction for coastal ecosystems. Prog Oceanogr, 2015;137, 219–236.
Bindoff N L. Willebrand J. Artale V. et al. Observations: oceanic climate change and sea level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, [eds.] et al. Cambridge University Press, Cambridge, 2007.
Sakallı, A. Sea surface temperature change in the Mediterranean Sea under climate change: A linear model for simulation of the sea surface temperature up to 2100. Appl Ecol Environ Res, 2017;15, 707–716.
Copernicus ERA5 dataset of European Union. 2023. https://climate.copernicus.eu/record-high-global-sea-surface-temperatures-continue-august
Arafat M Y. Bakhtiyar Y. Mir Z. et al. Paradigm of climate change and its ınfluence on zooplankton. Biosci. Biotechnol. Res. Asia, 2021;18,423.
Wiafe G. Yaqub H B Mensah M A. et al. Impact of climate change on long-term zooplankton biomass in the upwelling region of the Gulf of Guinea. ICES J Mar Sci, 2008;65(3), 318–324.
Heneghan R F. Everett J D. Blanchar J L. et al. Climate-driven zooplankton shifts cause large-scale declines in food quality for fish. Nat Clim Chang, 2023;13(5), 470–477.
Ma M. Zhu Y. Zhu X. et al. Response of zooplankton to warming in a low-salinity, eutrophic bay. Ecological Indicators, 2023;153, 110459.
Deng Y. The impact of jellyfish population on human economy and countermeasures. The 2nd International Conference on Biological Engineering and Medical Science, 2023; 666–672.
Fernández-Alías A. Marcos C. Pérez-Ruzafa A. The unpredictability of scyphozoan jellyfish blooms. Front Mar Sci, 2024;11,1349956.
Garzke J. Hansen T. Ismar S M H. et al. Combined effects of ocean warming and acidification on copepod abundance, body size, and fatty acid content. PLoS One, 2016;11(5),e0155952.
Hansen A N. Visser A W. Carbon export by vertically migrating zooplankton: An optimal behavior model. Limnology and Oceanography, 2016;61(2), 701–710.
Ratnarajah L. Lannuzel D. Townsend A T. et al. Monitoring and modelling marine zooplankton in a changing climate. Nat Clim Chang, 2023;13(2), 159–169.
Campoy A N. Cruz J. Ramo J B E. et al. Ocean acidification impacts on zooplankton. Zooplankton Ecology, 2020;64–82.
Gattuso J P. Hansson L. [eds.]. Ocean acidification. Oxford University Press, USA, 2011.
Havenhand J N. How will ocean acidification affect Baltic Sea ecosystems? An assessment of plausible impacts on key functional groups. Ambio 2012;41(6): 637–644.
Crame W G W. Yohe M. Auffhammer C. et al. Detection and attribution of observed impacts. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. C.B. Field, V.R. Barros, D.J. Dokken et al. [eds.]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. 2014;979–1037.
Gao K. Ga G. Wang Y. Dupont S. Impacts of ocean acidification under multiple stressors on typical organisms and ecological processes. Marine Life Science & Technology, 2020;2, 279–291.
Sunar M. C. Kır M. Thermal tolerance of Acartia tonsa: In relation to acclimation temperature and life stage. Journal of Thermal Biology, 2021;102, 103116.
Calbet A. Saiz E. Thermal acclimation and adaptation in marine protozooplankton and mixoplankton. Front Microbiol, 2022;13, 832810.
Cousyn C. De Meester L. Colbourne J. K. et al. Local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proceedings of the National Academy of Sciences, 2001;98(11), 6256–6260.
Ohman M D. Behavioral responses of zooplankton to predation. Bull Mar Sci, 1988;43(3), 530–550.
Kiørboe T. Visser A. W. Andersen K. H. Adaptive feeding behavior and functional responses in zooplankton. Biological Reviews, 2018;93(3), 949–964.
Beaugrand G. Reid P C. Ibanez F. et al. Edwards M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science, 2002;296(5573), 1692–1694.
Evans M A. Schlitzer R. Gruber N. Temperature-mediated changes in zooplankton body size: Large scale temporal and spatial analysis. Glob Chang Biol, 2020;26(3), 1322–1332.
Bergmann C. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 1847;3(1), 595–708.
Horn H. Effects of ocean acidification and warming on microzooplankton communities. PhD Thesis, University of California, 2016.
Din K V. Janssens L. Stoks R. et al. Development of metal adaptation in a tropical marine zooplankton. Science of the Total Environment, 2020;732, 139194.
Colin S P. Dam H G. Comparison of the functional and numerical responses of resistant versus nonresistant populations of the copepod Acartia hudsonica fed the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 2007;6:875–82.
Trubovitz S. Deyhle A. McDonald A. Marine plankton show threshold extinction response to Neogene climate change. Science Advances, 2020;6(37), eaay6463.
Barreiro A. Guisande C. Maneiro I. et al. Zooplankton interactions with toxic phytoplankton: Some implications for food web studies and algal defence strategies of feeding selectivity behaviour. Mar Ecol Prog Ser, 2007;344, 77–87.
Dam H G. Evolutionary adaptation of marine zooplankton to global change. Ann Rev Mar Sci, 2021;13,455–479.
Lynch M. Gabriel W. Wood A M. Adaptive and demographic responses of plankton populations to environmental change. Limnol Oceanogr, 1991;36(7), 1301–1312.
Caron D A. Hutchins D A. The effects of changing climate on microzooplankton grazing and community structure: Drivers, predictions, and knowledge gaps. J Plankton Res, 2012;34(4), 367–383.
Hall C J. Lewandowska A M. Zooplankton dominance shift in response to climate-driven salinity change: A mesocosm study. Estuar Coast Shelf Sci, 2022;265,107688.
López-Abbate C. Microzooplankton communities in a changing ocean: A risk assessment. Mar Environ Res, 2021;170, 105438.10. Boltovskoy D. Correa N. Boltovskoy A. Marine zooplanktonic diversity: a view from the South Atlantic. Oceanologica Acta, 2002; 25(5), 271-278.
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |