Main Components of Macroalgae and Their Commercial Dimensions
Nurgul Sen Ozdemir (Author), Fatma Caf (Author)
Release Date: 2024-06-07
In this review, the importance of instrumental insemination in honey bee breeding programmes, the chronological development of this technique, pre-insemination practices, the insemination procedures, and concerns in instrumental insemination procedure were briefly explained.
Media Type
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Recent Applications and Biological Activities in Aquaculture and Agriculture |
First Page | 169 |
Last Page | 190 |
DOI | https://doi.org/10.69860/nobel.9786053359319.9 |
Page Count | 22 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Nurgul Sen Ozdemir (Author)
Bingöl University
https://orcid.org/0000-0001-6656-822X
3Nurgül Şen Özdemir completed her doctoral education at Trabzon Technical University, Institute of Science and Technology, Fisheries Technology Department. She is an associate professor at Bingöl University, Vocational School of Food, Agriculture and Livestock, Department of Veterinary Health. She continues his studies in the field of Aquatic life, macroalgae and food quality index.
Fatma Caf (Author)
Bingöl University
https://orcid.org/0000-0002-0363-4848
3Fatma CAF completed her doctoral education at Fırat University, Institute of Science and Technology, Department of Zoology. She is an associate professor at Bingöl University, Vocational School of Food, Agriculture and Livestock, Department of Veterinary Health. she continues her studies in the field of Aquatic life, macroalgae, nanoparticle and cell culture.
Kammler, S., Romero, A. M., Burkhardt, C., Baruth, L., Antranikian, G., Liese, A., & Kaltschmitt, M. (2024). Macroalgae valorization for the production of polymers, chemicals, and energy. Biomass and Bioenergy, 183, 107105.
Generalić Mekinić, I., Skroza, D., Šimat, V., Hamed, I., Čagalj, M., & Popović Perković, Z. (2019). Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules, 9(6), 244.
Osório, C., Machado, S., Peixoto, J., Bessada, S., Pimentel, F. B., C. Alves, R., & Oliveira, M. B. P. (2020). Pigments content (chlorophylls, fucoxanthin and phycobiliproteins) of different commercial dried algae. Separations, 7(2), 33.
Wernberg, T., Thomsen, M. S., Tuya, F., & Kendrick, G. A. (2011). Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature. Journal of Experimental Marine Biology and Ecology, 400(1-2), 264-271.
Mantri, V. A., Kavale, M. G., & Kazi, M. A. (2019). Seaweed biodiversity of India: Reviewing current knowledge to identify gaps, challenges, and opportunities. Diversity, 12(1), 13.
Cirik Ş, Cirik S, Aquatic Plants I-Marine Plants Biology, Ecology and Cultivation Techniques, Ege University Faculty of Fisheries Publications, 58, 135-145, 2011.
Hoek, C., Mann, D. G., & Jahns, H. M. (1995). Algae: an introduction to phycology. Cambridge University Press.
O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P. G., Hughes, H., & Gardiner, G. E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8(7), 2038-2064.
Siriwardhana, N., Jeon, Y. J., Kim, S. H., Ha, J. H., Heo, S. J., & Lee, K. W. (2004). Enzymatic hydrolysis for effective extraction of antioxidative compounds from Hizikia fusiformis. Algae, 19(1), 59-68.
Remya, R. R., Samrot, A. V., Kumar, S. S., Mohanavel, V., Karthick, A., Chinnaiyan, V. K., ... & Muhibbullah, M. (2022). Bioactive potential of brown algae. Adsorption Science & Technology, 2022, 1-13.
Pereira, L. (2018). Seaweeds as source of bioactive substances and skin care therapy—cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics, 5(4), 68.
Irianto, I., Naryaningsih, A., Trisnawati, N. W., Astuti, A., Komariyah, K., Qomariyah, L., ... & Putra, N. R. (2024). From Sea to Solution: A Review of Green Extraction Approaches for Unlocking the Potential of Brown Algae. South African Journal of Chemical Engineering.
Fisch, K.M., Bohm, V., Wrightand, A.D., Konig, G.M. (2003). Antioxidative meroterpenoids from the brownalga Cystoseira crinita. Journal of Natural Products. 66, 968–975
Draget, K.I., Smidsrod, O., Skjak-Braek G., 2005. Alginates from algae. In: Biopolymers Online. WileyVCH Verlag GmbH & Co. KGa.
Nan, F., Feng, J., Lv, J., Liu, Q., Fang, K., Gong, C., & Xie, S. (2017). Origin and evolutionary history of freshwater Rhodophyta: further insights based on phylogenomic evidence. Scientific Reports, 7(1), 2934.
Øverland, M., Mydland, L.T., Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture, 99: 13-24.
Lafarga, T., Acién-Fernández, F. G., & Garcia-Vaquero, M. (2020). Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Research, 48, 101909.
Lafarga, T., Acién-Fernández, F. G., & Garcia-Vaquero, M. (2020). Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Research, 48, 101909.
Alisha, R. P. D., & Haider, A. (2019). Seaweed: Nutritional and health benefits. Journal of pharmaceutical innovation, 8, 80-83.
Shanura Fernando, I. P., Asanka Sanjeewa, K. K., Samarakoon, K. W., Kim, H. S., Gunasekara, U. K. D. S. S., Park, Y. J., ... & Jeon, Y. J. (2018). The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: Antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities. Journal of Applied Phycology, 30, 3223-3232.
Khalil, Z.I., Asker, M.M.S., El-Sayed, S., KobbiaI, A., 2010. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World Journal of Microbiology Biotechnology 26: 1225–31.
John R.P., Anisha, G.S., Nampoothiri, K.M., Pveey, A., 2011. Micro and macro algal biomass: a renewable source for bioethanol. Bioresource Technology 102:186–93.
Rahikainen, M., Samson, R., & Yang, B. (2021). Global production of macroalgae and uses as food, dietary supplements and food additives. Project Report, Growing Algae Sustainably in the Baltic Sea (GRASS), Interreg Baltic Sea Region.
Remya, R. R., Rajasree, S. R., Suman, T. Y., Aranganathan, L., Gayathri, S., Gobalakrishnan, M., & Karthih, M. G. (2018). Laminarin based AgNPs using brown seaweed Turbinaria ornata and its induction of apoptosis in human retinoblastoma Y79 cancer cell lines. Materials Research Express, 5(3), 035403
Becker, S., Scheffel, A., Polz, M. F., & Hehemann, J. H. (2017). Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Applied and Environmental Microbiology, 83(9), e03389-16.
Charoensiddhi, S., Lorbeer, A. J., Lahnstein, J., Bulone, V., Franco, C. M., & Zhang, W. (2016). Enzyme-assisted extraction of carbohydrates from the brown alga Ecklonia radiata: Effect of enzyme type, pH and buffer on sugar yield and molecular weight profiles. Process Biochemistry, 51(10), 1503-1510.
López-Hortas, L., Flórez-Fernández, N., Torres, M. D., Ferreira-Anta, T., Casas, M. P., Balboa, E. M., ... & Domínguez, H. (2021). Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics. Marine Drugs, 19(10), 552.
Fauziee, N. A. M., Chang, L. S., Mustapha, W. A. W., Nor, A. R. M., & Lim, S. J. (2021). Functional polysaccharides of fucoidan, laminaran and alginate from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana). International Journal of Biological Macromolecules, 167, 1135-1145.
Bittkau, K. S., Neupane, S., & Alban, S. (2020). Initial evaluation of six different brown algae species as source for crude bioactive fucoidans. Algal Research, 45, 101759.
Guo, X., Wang, Y., Qin, Y., Shen, P., & Peng, Q. (2020). Structures, properties and application of alginic acid: A review. International Journal of Biological Macromolecules, 162, 618-628.
Sreekumar, K., & Bindhu, B. (2020). Alginic acid: A potential biopolymer from brown algae. Mater. Int, 2, 433-438.
Pérez-Lloréns, J. L., Carrero, I. H., Oñate, J. J. V., & Murillo, F. G. B. (2016). ¿Las algas se comen?: un periplo por la biología, la historia, las curiosidades y la gastronomía [Are Algae Eaten? A Journey Through Biology, History, Curiosities and Gastronomy]. Editorial UCA, S. d. P. d. l. U. d. C. Spain
Michalak, I., Dmytryk, A., & Chojnacka, K. (2020). Algae cosmetics. Encyclopedia of Marine Biotechnology, 1, 65-85.
Michalak, I., Dmytryk, A., & Chojnacka, K. (2020). Algae cosmetics. Encyclopedia of Marine Biotechnology, 1, 65-85.
McHugh, D.J., 2003. A guide to the seaweed industry. FAO Fish Technology 441: 1-105.
Pereira, L. (2016). Edible seaweeds of the world. CRC Press.
Knutsen, S. H., Myslabodski, D. E., Larsen, B., & Usov, A. I. (1994). A modified system of nomenclature for red algal galactans. Botanica Marina, 37, 163-170.
Necas, J., & Bartosikova, L. (2013). Carrageenan: a review. Veterinarni Medicina, 58(4), 187-205.
Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., ... & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29, 949-982.
Firdayanti, L., Yanti, R., Rahayu, E. S., & Hidayat, C. (2023). Carrageenan extraction from red seaweed (Kappaphycopsis cottonii) using the bead mill method. Algal Research, 69, 102906.
Shafie, M. H., Kamal, M. L., Zulkiflee, F. F., Hasan, S., Uyup, N. H., Abdullah, S., ... & Zafarina, Z. (2022). Application of Carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. Journal of the Indian Chemical Society, 99(9), 100613.
Salido, M., Soto, M., & Seoane, S. (2023). Seaweed: Nutritional and gastronomic perspective. A review. Algal Research, 103357.
Rasmussen, R. S., & Morrissey, M. T. (2007). Marine biotechnology for production of food ingredients. Advances in Food and Nutrition Research, 52, 237-292.
Rocha, C. M., Sousa, A. M., Kim, J. K., Magalhães, J. M., Yarish, C., & do Pilar Gonçalves, M. (2019). Characterization of agar from Gracilaria tikvahiae cultivated for nutrient bioextraction in open water farms. Food Hydrocolloids, 89, 260-271.
Jayakody, M. M., Vanniarachchy, M. P. G., & Wijesekara, I. (2022). Seaweed derived alginate, agar, and carrageenan based edible coatings and films for the food industry: A review. Journal of Food Measurement and Characterization, 16(2), 1195-1227.
Costa, C., Alves, A., Pinto, P. R., Sousa, R. A., da Silva, E. A. B., Reis, R. L., & Rodrigues, A. E. (2012). Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohydrate Polymers, 88(2), 537-546.
Tziveleka, L. A., Ioannou, E., & Roussis, V. (2019). Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydrate Polymers, 218, 355-370.
Chen, X., Yue, Z., Winberg, P. C., Dinoro, J. N., Hayes, P., Beirne, S., & Wallace, G. G. (2019). Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomaterials Science, 7(8), 3497-3509.
Javed, A., Hussain, M. B., Tahir, A., Waheed, M., Anwar, A., Shariati, M. A., ... & Pasalar, M. (2021). Pharmacological applications of phlorotannins: A comprehensive review. Current Drug Discovery Technologies, 18(2), 282-292.
Filote, C., Santos, S. C., Popa, V. I., Botelho, C. M., & Volf, I. (2021). Biorefinery of marine macroalgae into high-tech bioproducts: a review. Environmental Chemistry Letters, 19, 969-1000.
Young, R. M., Schoenrock, K. M., von Salm, J. L., Amsler, C. D., & Baker, B. J. (2015). Structure and function of macroalgal natural products. Natural Products From Marine Algae: Methods and Protocols, 39-73.
Catarino, M. D., Silva, A. M., & Cardoso, S. M. (2017). Fucaceae: A source of bioactive phlorotannins. International Journal of Molecular Sciences, 18(6), 1327.
Lee, D. S., Kang, M. S., Hwang, H. J., Eom, S. H., Yang, J. Y., Lee, M. S., ... & Kim, Y. M. (2008). Synergistic effect between dieckol from Ecklonia stolonifera and β-lactams against methicillin-resistant Staphylococcus aureus. Biotechnology and Bioprocess Engineering, 13, 758-764.
Kanamoto, A., Kato, Y., Yoshida, E., Hasunuma, T., & Kondo, A. (2021). Development of a method for fucoxanthin production using the Haptophyte marine microalga Pavlova sp. OPMS 30543. Marine Biotechnology, 23, 331-341.
Zarekarizi, A., Hoffmann, L., & Burritt, D. (2019). Approaches for the sustainable production of fucoxanthin, a xanthophyll with potential health benefits. Journal of applied phycology, 31, 281-299.
Kim, S. M., Jung, Y. J., Kwon, O. N., Cha, K. H., Um, B. H., Chung, D., & Pan, C. H. (2012). A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Applied Biochemistry and Biotechnology, 166, 1843-1855.
Lange, K. W., Hauser, J., Nakamura, Y., & Kanaya, S. (2015). Dietary seaweeds and obesity. Food Science and Human Wellness, 4(3), 87-96.
Bae, M., Kim, M. B., Park, Y. K., & Lee, J. Y. (2020). Health benefits of fucoxanthin in the prevention of chronic diseases. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1865(11), 158618.
Buckley, S., Hardy, K., Hallgren, F., Kubiak-Martens, L., Miliauskienė, Ž., Sheridan, A., ... & Subirà, M. E. (2023). Human consumption of seaweed and freshwater aquatic plants in ancient Europe. Nature Communications, 14(1), 6192.
Buschmann, A. H., Camus, C., Infante, J., Neori, A., Israel, Á., Hernández-González, M. C., ... & Critchley, A. T. (2017). Seaweed production: overview of the global state of exploitation, farming and emerging research activity. European Journal of Phycology, 52(4), 391-406.
FAO, R. (2022). The state of world fisheries and aquaculture 2022. Towards blue transformation. Food Agric Organ.
Juul, L., Nissen, S. H., Bruhn, A., Alexi, N., Jensen, S. K., Hammershøj, M., & Dalsgaard, T. K. (2024). Ulva species: A critical review on the green seaweed as a source of food protein. Trends in Food Science & Technology, 104534.
FAO. (2018). The global status of seaweed production, trade and utilization, volume 124.
FAO FIGIS, 2021, FAO FIGIS FAO fisheries and aquaculture Fishery statistical collection - global aquaculture production
URL-1 https://openknowledge.worldbank.org/handle/10986/40187 30.05.202448. Chen, X., Yue, Z., Winberg, P. C., Dinoro, J. N., Hayes, P., Beirne, S., & Wallace, G. G. (2019). Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomaterials Science, 7(8), 3497-3509.
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |