The Role of Ion Channels in Diabetes Mellitus
Abdulhadi Cihangir Uguz (Author)
Release Date: 2023-09-14
The role of ion channels in diabetes mellitus encompasses their critical involvement in regulating cellular functions central to glucose metabolism and insulin secretion. Ion channels, such as potassium (K+) channels and calcium (Ca2+) channels, play pivotal roles in pancreatic beta cells where they govern insulin secretion in response to changes in blood glucose levels. ATP-sensitive [...]
Media Type
PDF
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Current Multidisciplinary Approach to Diabetes Mellitus Occurrence Mechanism |
First Page | 115 |
Last Page | 132 |
DOI | https://doi.org/10.69860/nobel.9786053359104.11 |
ISBN | 978-605-335-910-4 (PDF) |
Language | ENG |
Page Count | 18 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Abdulhadi Cihangir Uguz (Author)
Associate Professor, Karamanoglu Mehmetbey University
https://orcid.org/0000-0002-5778-581X
Chatelain FC, Bichet D, Douguet D, Feliciangeli S, Bendahhou S, Reichold M, et al. TWIK1, a unique background channel with variable ion selectivity. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(14):5499-504.
Zhang Y, Xie L, Gunasekar SK, Tong D, Mishra A, Gibson WJ, et al. SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nature cell biology. 2017;19(5):504-17.
MacDonald PE, Rorsman P. Oscillations, intercellular coupling, and insulin secretion in pancreatic beta cells. PLoS biology. 2006;4(2):e49.
Colsoul B, Vennekens R, Nilius B. Transient receptor potential cation channels in pancreatic β cells. Reviews of physiology, biochemistry and pharmacology. 2011;161:87-110.
Dusaulcy R, Handgraaf S, Visentin F, Howald C, Dermitzakis ET, Philippe J, et al. High-fat diet impacts more changes in beta-cell compared to alpha-cell transcriptome. PloS one. 2019;14(3):e0213299.
Segerstolpe Å, Palasantza A, Eliasson P, Andersson EM, Andréasson AC, Sun X, et al. Single-Cell Transcriptome Profi ling of Human Pancreatic Islets in Health and Type 2 Diabetes. Cell metabolism. 2016;24(4):593-607.
Chen C, Chmelova H, Cohrs CM, Chouinard JA, Jahn SR, Stertmann J, et al. Alterations in β-Cell Calcium Dynamics and Effi cacy Outweigh Islet Mass Adaptation in Compensation of Insulin Resistance and Prediabetes Onset. Diabetes. 2016;65(9):2676-85.
Li N, Wu JX, Ding D, Cheng J, Gao N, Chen L. Structure of a Pancreatic ATP-Sensitive Potassium Channel. Cell. 2017;168(1-2):101-10.e10.
Lee KPK, Chen J, MacKinnon R. Molecular structure of human KATP in complex with ATP and ADP. eLife. 2017;6.
Ortiz D, Gossack L, Quast U, Bryan J. Reinterpreting the action of ATP analogs on K(ATP) channels. The Journal of biological chemistry. 2013;288(26):18894-902.
Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. The Journal of clinical investigation. 2005;115(8):2047-58.
Thomas PM, Cote GJ, Wohllk N, Haddad B, Mathew PM, Rabl W, et al. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science (New York, NY). 1995;268(5209):426-9.
Koster JC, Marshall BA, Ensor N, Corbett JA, Nichols CG. Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. Cell. 2000;100(6):645-54.
Ashcroft FM, Puljung MC, Vedovato N. Neonatal Diabetes and the K(ATP) Channel: From Mutation to Therapy. Trends in endocrinology and metabolism: TEM. 2017;28(5):377-87.
Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T, Glümer C, et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes. 2003;52(2):573-7.
Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confi rm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568-72.
Pinney SE, MacMullen C, Becker S, Lin YW, Hanna C, Thornton P, et al. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. The Journal of clinical investigation. 2008;118(8):2877-86.
Mohan V, Cooper ME, Matthews DR, Khunti K. The Standard of Care in Type 2 Diabetes: Re-evaluating the Treatment Paradigm. Diabetes therapy : research, treatment and education of diabetes and related disorders. 2019;10(Suppl 1):1-13.
Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced beta-cell apoptosis in cultured human islets. The Journal of clinical endocrinology and metabolism. 2005;90(1):501-6.
Lee JTC, Shanina I, Chu YN, Horwitz MS, Johnson JD. Carbamazepine, a beta-cell protecting drug, reduces type 1 diabetes incidence in NOD mice. Scientifi c reports. 2018;8(1):4588.
Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, et al. Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes. 2008;57(6):1618-28.
Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nature genetics. 2005;37(7):733-8.
Blodgett DM, Nowosielska A, Afi k S, Pechhold S, Cura AJ, Kennedy NJ, et al. Novel Observations From Next-Generation RNA Sequencing of Highly Purifi ed Human Adult and Fetal Islet Cell Subsets. Diabetes. 2015;64(9):3172-81.
Henquin JC, Dufrane D, Gmyr V, Kerr-Conte J, Nenquin M. Pharmacological approach to understanding the control of insulin secretion in human islets. Diabetes, obesity & metabolism. 2017;19(8):1061-70.
Imashuku S, Muramatsu H, Sugihara T, Okuno Y, Wang X, Yoshida K, et al. PIEZO1 gene mutation in a Japanese family with hereditary high phosphatidylcholine hemolytic anemia and hemochromatosisinduced diabetes mellitus. International journal of hematology. 2016;104(1):125-9.
Rapetti-Mauss R, Lacoste C, Picard V, Guitton C, Lombard E, Loosveld M, et al. A mutation in the Gardos channel is associated with hereditary xerocytosis. Blood. 2015;126(11):1273-80.
Li XN, Herrington J, Petrov A, Ge L, Eiermann G, Xiong Y, et al. The role of voltage-gated potassium channels Kv2.1 and Kv2.2 in the regulation of insulin and somatostatin release from pancreatic islets. The Journal of pharmacology and experimental therapeutics. 2013;344(2):407-16.
Araki Y, Yoshida T, Nakamura N, Koyama K, Nakamura Y, Nakano K, et al. Effect of islet-activating protein (IAP) upon insulin secretion from human pancreatic islets. Endocrinologia japonica. 1981;28(2):139-43.
Katada T, Ui M. Perfusion of the pancreas isolated from pertussis-sensitized rats: potentiation of insulin secretory responses due to beta-adrenergic stimulation. Endocrinology. 1977;101(4):1247-55.
Rosengren AH, Jokubka R, Tojjar D, Granhall C, Hansson O, Li DQ, et al. Overexpression of alpha2Aadrenergic receptors contributes to type 2 diabetes. Science (New York, NY). 2010;327(5962):217-20.
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocrine reviews. 2006;27(6):621-76.
Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19-31.
Flanagan SE, Vairo F, Johnson MB, Caswell R, Laver TW, Lango Allen H, et al. A CACNA1D mutation in a patient with persistent hyperinsulinaemic hypoglycaemia, heart defects, and severe hypotonia. Pediatric diabetes. 2017;18(4):320-3.
Reinbothe TM, Alkayyali S, Ahlqvist E, Tuomi T, Isomaa B, Lyssenko V, et al. The human L-type calcium channel Cav1.3 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia. 2013;56(2):340-9.
Gandasi NR, Yin P, Riz M, Chibalina MV, Cortese G, Lund PE, et al. Ca2+ channel clustering with insulincontaining granules is disturbed in type 2 diabetes. The Journal of clinical investigation. 2017;127(6):2353- 64.
Wang P, Fiaschi-Taesch NM, Vasavada RC, Scott DK, García-Ocaña A, Stewart AF. Diabetes mellitus- -advances and challenges in human β-cell proliferation. Nature reviews Endocrinology. 2015;11(4):201- 12.
Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989;2(4):1313-23.
Hardie RC, Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron. 1992;8(4):643-51.
Salido GM, Sage SO, Rosado JA. TRPC channels and store-operated Ca(2+) entry. Biochimica et biophysica acta. 2009;1793(2):223-30.
Harteneck C, Klose C, Krautwurst D. Synthetic modulators of TRP channel activity. Advances in experimental medicine and biology. 2011;704:87-106.
Clapham DE. TRP channels as cellular sensors. Nature. 2003;426(6966):517-24.
Henquin JC, Nenquin M, Ravier MA, Szollosi A. Shortcomings of current models of glucose-induced insulin secretion. Diabetes, obesity & metabolism. 2009;11 Suppl 4:168-79.
Jacobson DA, Philipson LH. TRP channels of the pancreatic beta cell. Handbook of experimental pharmacology. 2007(179):409-24.
Islam MS. Calcium signaling in the islets. Advances in experimental medicine and biology. 2010;654:235- 59.
Park SH, Ryu SY, Yu WJ, Han YE, Ji YS, Oh K, et al. Leptin promotes K(ATP) channel traffi cking by AMPK signaling in pancreatic β-cells. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(31):12673-8.
Bishara NB, Ding H. Glucose enhances expression of TRPC1 and calcium entry in endothelial cells. American journal of physiology Heart and circulatory physiology. 2010;298(1):H171-8.
Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(11):5208-13.
Brixel LR, Monteilh-Zoller MK, Ingenbrandt CS, Fleig A, Penner R, Enklaar T, et al. TRPM5 regulates glucose-stimulated insulin secretion. Pfl ugers Archiv : European journal of physiology. 2010;460(1):69-76.
Hofmann T, Chubanov V, Gudermann T, Montell C. TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Current biology : CB. 2003;13(13):1153-8.
Oike H, Wakamori M, Mori Y, Nakanishi H, Taguchi R, Misaka T, et al. Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. Biochimica et biophysica acta. 2006;1761(9):1078-84.
Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, et al. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PloS one. 2009;4(4):e5106.
Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, et al. TRPM4 controls insulin secretion in pancreatic beta-cells. Cell calcium. 2007;41(1):51-61.
Marigo V, Courville K, Hsu WH, Feng JM, Cheng H. TRPM4 impacts on Ca2+ signals during agonistinduced insulin secretion in pancreatic beta-cells. Molecular and cellular endocrinology. 2009;299(2):194- 203.
Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, et al. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nature immunology. 2007;8(3):312-20.
Herson PS, Ashford ML. Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. The Journal of physiology. 1997;501 ( Pt 1)(Pt 1):59-66.
Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, et al. TRPM2 activation by cyclic ADPribose at body temperature is involved in insulin secretion. The EMBO journal. 2006;25(9):1804-15.
K, Dezaki K, Damdindorj B, Inada H, Shiuchi T, Mori Y, et al. Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes. 2011;60(1):119-26.
Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Science signaling. 2009;2(71):ra23.
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816-24.
Swain J, Kumar Mishra A. Location, Partitioning Behavior, and Interaction of Capsaicin with Lipid Bilayer Membrane: Study Using Its Intrinsic Fluorescence. The journal of physical chemistry B. 2015;119(36):12086-93.
Razavi R, Chan Y, Afi fi yan FN, Liu XJ, Wan X, Yantha J, et al. TRPV1+ sensory neurons control beta cell stress and islet infl ammation in autoimmune diabetes. Cell. 2006;127(6):1123-35.
Hisanaga E, Nagasawa M, Ueki K, Kulkarni RN, Mori M, Kojima I. Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells. Diabetes. 2009;58(1):174-84.
Köttgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. The Journal of cell biology. 2008;182(3):437-47.
Grapengiesser E, Gylfe E, Dansk H, Hellman B. Stretch activation of Ca2+ transients in pancreatic beta cells by mobilization of intracellular stores. Pancreas. 2003;26(1):82-6.
Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L, et al. Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. PloS one. 2012;7(5):e38005.
Numazawa S, Takase M, Ahiko T, Ishii M, Shimizu S, Yoshida T. Possible involvement of transient receptor potential channels in electrophile-induced insulin secretion from RINm5F cells. Biological & pharmaceutical bulletin. 2012;35(3):346-54.
Babes A, Fischer MJ, Filipovic M, Engel MA, Flonta ML, Reeh PW. The anti-diabetic drug glibenclamide is an agonist of the transient receptor potential Ankyrin 1 (TRPA1) ion channel. European journal of pharmacology. 2013;704(1-3):15-22.
Wagner TF, Drews A, Loch S, Mohr F, Philipp SE, Lambert S, et al. TRPM3 channels provide a regulated infl ux pathway for zinc in pancreatic beta cells. Pfl ugers Archiv : European journal of physiology. 2010;460(4):755-65.
SI, Müller I, Mannebach S, Endo T, Thiel G. Signal transduction of pregnenolone sulfate in insulinoma cells: activation of Egr-1 expression involving TRPM3, voltage-gated calcium channels, ERK, and ternary complex factors. The Journal of biological chemistry. 2011;286(12):10084-96.
Held K, Kichko T, De Clercq K, Klaassen H, Van Bree R, Vanherck JC, et al. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(11):E1363-72.
McCoy DD, Zhou L, Nguyen AK, Watts AG, Donovan CM, McKemy DD. Enhanced insulin clearance in mice lacking TRPM8 channels. American journal of physiology Endocrinology and metabolism. 2013;305(1):E78-88
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |