Release Date: 2023-09-14

Triggering Role of Viruses and Bacteria in Type I Diabetes

Release Date: 2023-09-14

The triggering role of viruses and bacteria in type 1 diabetes (T1D) involves complex interactions between genetic susceptibility, environmental factors, and the immune system. Viruses, particularly enteroviruses such as Coxsackievirus B, have been implicated in triggering autoimmune responses that lead to the destruction of insulin-producing beta cells in the pancreas. These viruses can infect pancreatic [...]

Media Type
  • PDF

Buy from

Price may vary by retailers

Work TypeBook Chapter
Published inCurrent Multidisciplinary Approach to Diabetes Mellitus Occurrence Mechanism
First Page141
Last Page150
DOIhttps://doi.org/10.69860/nobel.9786053359104.13
ISBN978-605-335-910-4 (PDF)
LanguageENG
Page Count10
Copyright HolderNobel Tıp Kitabevleri
Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
The triggering role of viruses and bacteria in type 1 diabetes (T1D) involves complex interactions between genetic susceptibility, environmental factors, and the immune system. Viruses, particularly enteroviruses such as Coxsackievirus B, have been implicated in triggering autoimmune responses that lead to the destruction of insulin-producing beta cells in the pancreas. These viruses can infect pancreatic beta cells directly or trigger an inflammatory response that activates autoreactive T cells, which mistakenly attack and destroy beta cells. Additionally, viral infections may disrupt immune tolerance mechanisms, leading to the production of autoantibodies against pancreatic antigens, a hallmark of T1D.
Bacterial infections, although less extensively studied compared to viruses, may also play a role in T1D pathogenesis. Some studies suggest that infections with certain gut microbiota, such as specific strains of Bacteroides and Firmicutes, could influence immune responses and contribute to autoimmune reactions against beta cells. The mechanisms by which bacteria may trigger or exacerbate T1D are still under investigation but likely involve interactions with the gut mucosa and modulation of immune responses.
Understanding the role of viruses and bacteria in T1D is crucial for developing preventive strategies and potential treatments that target these infectious triggers or modulate immune responses to preserve beta cell function. Ongoing research aims to elucidate these complex interactions and their implications for the development and progression of type 1 diabetes.
  • Bielka, W., Przezak, A., Pawlik, A. (2022). The Role of the Gut Microbiota in the Pathogenesis of Diabetes. International Journal of Molecular Sciences, 23(1), 480.

  • Arokiasamy, P., Salvi, S., Selvamani, Y. (2021). Global Burden of Diabetes Mellitus. In: Haring, R., Kickbusch, I., Ganten, D., Moeti, M. (eds) Handbook of Global Health. Springer, Cham.

  • Lin, X., Xu, Y., Pan, X., Xu, J., Ding, Y., Sun, X., … Shan, P. F. (2020). Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Scientifi c reports, 10(1), 14790.

  • Noble, J.A. and Valdes, A.M. (2011). Genetics of the HLA Region in the Prediction of Type 1 Diabetes. Current Diabetes Reports, 11, 533–542.

  • Kondrashova, A. and Hyöty, H. (2014) Role of Viruses and Other Microbes in the Pathogenesis of Type 1 Diabetes. International Reviews of Immunology, 33(4), 284-295.

  • Craig, M. E., Kim, K. W., Isaacs, S. R., Penno, M. A., Hamilton-Williams, E. E. and Couper, J. J. (2019). Early-life factors contributing to type 1 diabetes. Diabetologia, 62(10), 1823–1834.

  • Nekoua, M. P., Alidjinou, E. K. and Hober, D. (2022). Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nature reviews. Endocrinology, 18(8), 503–516.

  • van der Werf, N., Kroese, F. G., Rozing, J. and Hillebrands, J. L. (2007). Viral infections as potential triggers of type 1 diabetes. Diabetes/metabolism research and reviews, 23(3), 169–183.

  • Baggen, J., Thibaut, H. J., Strating, J. R. P. M. and van Kuppeveld, F. J. M. (2018). The life cycle of nonpolio enteroviruses and how to target it. Nature reviews. Microbiology, 16(6), 368–381.

  • Lloyd, R. E., Tamhankar, M. and Lernmark, Å. (2022). Enteroviruses and Type 1 Diabetes: Multiple Mechanisms and Factors?. Annual review of medicine, 73, 483–499.

  • Ohara, N., Kaneko, M., Nishibori, T., Sato, K., Furukawa, T., Koike, T., … Kamoi, K. (2016). Fulminant Type 1 Diabetes Mellitus Associated with Coxsackie Virus Type A2 Infection: A Case Report and Literature Review. Internal medicine (Tokyo, Japan), 55(6), 643–646.

  • Rajsfus, B. F., Mohana-Borges, R. and Allonso, D. (2023). Diabetogenic viruses: linking viruses to diabetes mellitus. Heliyon, 9(4), e15021.

  • Alhazmi, A., Nekoua, M. P., Michaux, H., Sane, F., Halouani, A., Engelmann, I., … Hober, D. (2021). Effect of Coxsackievirus B4 Infection on the Thymus: Elucidating Its Role in the Pathogenesis of Type 1 Diabetes. Microorganisms, 9(6), 1177.

  • Akhbari, P., Richardson, S. J. And Morgan, N. G. (2020). Type 1 Diabetes: Interferons and the Aftermath of Pancreatic Beta-Cell Enteroviral Infection. Microorganisms, 8(9), 1419.

  • Krogvold, L., Edwin, B., Buanes, T., Frisk, G., Skog, O., Anagandula, M., … Dahl-Jørgensen, K. (2015). Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes, 64(5), 1682–1687.

  • Griffi ths, P. and Reeves, M. (2021). Pathogenesis of human cytomegalovirus in the immunocompromised host. Nature reviews. Microbiology, 19(12), 759–773.

  • Perera, M. R., Wills, M. R., and Sinclair, J. H. (2021). HCMV Antivirals and Strategies to Target the Latent Reservoir. Viruses, 13(5), 817.

  • Ward, K. P., Galloway, W. H., & Auchterlonie, I. A. (1979). Congenital cytomegalovirus infection and diabetes. Lancet (London, England), 1(8114), 497.

  • Yoon, J. W., Ihm, S. H., and Kim, K. W. (1989). Viruses as a triggering factor of type 1 diabetes and genetic markers related to the susceptibility to the virus-associated diabetes. Diabetes research and clinical practice, 7 Suppl 1, S47–S58.

  • Jun, H. S., & Yoon, J. W. (2003). A new look at viruses in type 1 diabetes. Diabetes/metabolism research and reviews, 19(1), 8–31.

  • Nicoletti, F., Scalia, G., Lunetta, M., Condorelli, F., Di Mauro, M., Barcellini, W., … Meroni, P. L. (1990). Correlation between islet cell antibodies and anti-cytomegalovirus IgM and IgG antibodies in healthy fi rstdegree relatives of type 1 (insulin-dependent) diabetic patients. Clinical immunology and immunopathology, 55(1), 139–147.

  • Ekman, I., Vuorinen, T., Knip, M., Veijola, R., Toppari, J., Hyöty, H., … Lempainen, J. (2019). Early childhood CMV infection may decelerate the progression to clinical type 1 diabetes. Pediatric diabetes, 20(1), 73–77.

  • Al-Hakami A. M. (2016). Pattern of thyroid, celiac, and anti-cyclic citrullinated peptide autoantibodies coexistence with type 1 diabetes mellitus in patients from Southwestern Saudi Arabia. Saudi medical journal, 37(4), 386–391.

  • Aarnisalo, J., Veijola, R., Vainionpää, R., Simell, O., Knip, M. and Ilonen, J. (2008). Cytomegalovirus infection in early infancy: risk of induction and progression of autoimmunity associated with type 1 diabetes. Diabetologia, 51(5), 769–772.

  • Coulson, B. S., Witterick, P. D., Tan, Y., Hewish, M. J., Mountford, J. N. and Honeyman, M. C. (2002). Growth of rotaviruses in primary pancreatic cells. Journal of virology, 76(18), 9537–9544.

  • Perrett, K. P., Jachno, K., Nolan, T. M. and Harrison, L. C. (2019). Association of Rotavirus Vaccination With the Incidence of Type 1 Diabetes in Children. JAMA pediatrics, 173(3), 280–282.

  • Rogers, M. A. M., Basu, T. and Kim, C. (2019). Lower Incidence Rate of Type 1 Diabetes after Receipt of the Rotavirus Vaccine in the United States, 2001-2017. Scientifi c reports, 9(1), 7727.

  • Lambert, N., Strebel, P., Orenstein, W., Icenogle, J. and Poland, G. A. (2015). Rubella. Lancet (London, England), 385(9984), 2297–2307.

  • Ginsberg-Fellner, F., Witt, M. E., Fedun, B., Taub, F., Dobersen, M. J., McEvoy, R. C., … Rubinstein, P. (1985). Diabetes mellitus and autoimmunity in patients with the congenital rubella syndrome. Reviews of infectious diseases, 7 Suppl 1, S170–S176.

  • Menser, M. A., Forrest, J. M., Honeyman, M. C. and Burgess, J. A. (1974). Letter: Diabetes, HL-A antigens, and congenital rubella. Lancet (London, England), 2(7895), 1508–1509.

  • Paules, C., & Subbarao, K. (2017). Infl uenza. Lancet (London, England), 390(10095), 697–708.

  • Holman, R. R., Bethel, M. A., Chan, J. C., Chiasson, J. L., Doran, Z., Ge, J., … ACE Study Group (2014). Rationale for and design of the Acarbose Cardiovascular Evaluation (ACE) trial. American heart journal, 168(1), 23–9.e2.

  • Karaoglan, M. and Eksi, F. (2018). The Coincidence of Newly Diagnosed Type 1 Diabetes Mellitus with IgM Antibody Positivity to Enteroviruses and Respiratory Tract Viruses. Journal of diabetes research, 2018, 8475341.

  • Helmy, Y. A., Fawzy, M., Elaswad, A., Sobieh, A., Kenney, S. P. and Shehata, A. A. (2020). The COVID- 19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. Journal of clinical medicine, 9(4), 1225.

  • The World Health Organization. Coronavirus (COVID-19) Dashboard. Avaliable at: https://covid19.who. int/ (Accessed date: May 22, 2023)

  • Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., … Shang, Y. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet. Respiratory medicine, 8(5), 475–481.

  • Lamers, M. M., Beumer, J., van der Vaart, J., Knoops, K., Puschhof, J., Breugem, T. I., … Clevers, H. (2020). SARS-CoV-2 productively infects human gut enterocytes. Science (New York, N.Y.), 369(6499), 50–54.

  • Heaney, A. I., Griffi n, G. D. and Simon, E. L. (2020). Newly diagnosed diabetes and diabetic ketoacidosis precipitated by COVID-19 infection. The American journal of emergency medicine, 38(11), 2491.e3–2491. e4.

  • Sathish, T., Kapoor, N., Cao, Y., Tapp, R. J. And Zimmet, P. (2021). Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Diabetes, obesity & metabolism, 23(3), 870–874.

  • The Lancet Diabetes Endocrinology. (2020). COVID-19 and diabetes: a co-conspiracy?. The lancet. Diabetes & endocrinology, 8(10), 801.

  • Rubino, F., Amiel, S. A., Zimmet, P., Alberti, G., Bornstein, S., Eckel, R. H. and Renard, E. (2020). New- Onset Diabetes in Covid-19. The New England journal of medicine, 383(8), 789–790.

  • Sathish, T. and Chandrika Anton, M. (2021). Newly diagnosed diabetes in patients with mild to moderate COVID-19. Diabetes & metabolic syndrome, 15(2), 569–571.

  • Ambati, S., Mihic, M., Rosario, D. C., Sanchez, J. and Bakar, A. (2022). New-Onset Type 1 Diabetes in Children With SARS-CoV-2 Infection. Cureus, 14(3), e22790.

  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S.,… Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271–280.e8.

  • Gioia, M., Ciaccio, C., Calligari, P., De Simone, G., Sbardella, D., Tundo, G., … Coletta, M. (2020). Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochemical pharmacology, 182, 114225.

  • Millet, J. K. and Whittaker, G. R. (2015). Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus research, 202, 120–134.

  • Kim, M., Qie, Y., Park, J. and Kim, C. H. (2016). Gut Microbial Metabolites Fuel Host Antibody Responses. Cell host & microbe, 20(2), 202–214.

  • Levy, M., Thaiss, C. A. and Elinav, E. (2016). Metabolites: messengers between the microbiota and the immune system. Genes & development, 30(14), 1589–1597.

  • Ding, R. X., Goh, W. R., Wu, R. N., Yue, X. Q., Luo, X., Khine, W. W. T. and Lee, Y. K. (2019). Revisit gut microbiota and its impact on human health and disease. Journal of food and drug analysis, 27(3), 623–631.

  • Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I. and Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European journal of nutrition, 57(1), 1–24.

  • Pellegrini, S., Sordi, V., Bolla, A. M., Saita, D., Ferrarese, R., Canducci, F., … Piemonti, L. (2017). Duodenal Mucosa of Patients With Type 1 Diabetes Shows Distinctive Infl ammatory Profi le and Microbiota. The Journal of clinical endocrinology and metabolism, 102(5), 1468–1477.

  • Alkanani, A. K., Hara, N., Gottlieb, P. A., Ir, D., Robertson, C. E., Wagner, B. D., … Zipris, D. (2015). Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes. Diabetes, 64(10), 3510–3520.

  • Zhou, H., Sun, L., Zhang, S., Zhao, X., Gang, X. and Wang, G. (2021). The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta diabetologica, 58(3), 249–265.

  • Chen Y., Zhou J. and Wang L. (2021). Role and Mechanism of Gut Microbiota in Human Disease. Front Cell Infect Microbio, 11, 625913.

  • Del Chierico, F., Rapini, N., Deodati, A., Matteoli, M. C., Cianfarani, S., & Putignani, L. (2022). Pathophysiology of Type 1 Diabetes and Gut Microbiota Role. International journal of molecular sciences, 23(23), 14650.

  • Vallianou, N. G., Stratigou, T. and Tsagarakis, S. (2018). Microbiome and diabetes: Where are we now? Diabetes research and clinical practice, 146, 111–118.

  • Zheng, P., Li, Z. and Zhou, Z. (2018). Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes/ metabolism research and reviews, 34(7), e3043.

Share This Chapter!