Release Date: 2023-09-14

The Role of Genetics and Epigenetics in Diabetes Progress.

Hale Koksoy (Author)

Release Date: 2023-09-14

Genetics and epigenetics play critical roles in the progression and manifestation of diabetes mellitus. Genetic factors contribute significantly to an individual’s susceptibility to developing diabetes, influencing aspects such as insulin production, glucose metabolism, and pancreatic function. Variations in genes associated with insulin secretion (e.g., TCF7L2) and insulin sensitivity (e.g., IRS1) can predispose individuals to type [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inCurrent Multidisciplinary Approach to Diabetes Mellitus Occurrence Mechanism
    First Page1
    Last Page13
    DOIhttps://doi.org/10.69860/nobel.9786053359104.1
    LanguageENG
    Page Count13
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Genetics and epigenetics play critical roles in the progression and manifestation of diabetes mellitus. Genetic factors contribute significantly to an individual’s susceptibility to developing diabetes, influencing aspects such as insulin production, glucose metabolism, and pancreatic function. Variations in genes associated with insulin secretion (e.g., TCF7L2) and insulin sensitivity (e.g., IRS1) can predispose individuals to type 2 diabetes. Additionally, epigenetic mechanisms, which involve modifications in gene expression without altering the underlying DNA sequence, are increasingly recognized as key players in diabetes pathogenesis. Factors such as DNA methylation, histone modifications, and non-coding RNA regulation can influence gene activity related to glucose homeostasis and insulin signaling pathways. Understanding the interplay between genetic predisposition and epigenetic regulation provides valuable insights into the heterogeneous nature of diabetes mellitus and offers potential avenues for personalized treatment strategies and disease management.
    • Schuster DP, Duvuuri V. Diabetes mellitus. Clin Podiatr Med Surg. 2002;19(1):79-107.

    • Xie Z, Chang C, Huang G, Zhou Z. The Role of Epigenetics in Type 1 Diabetes. Adv Exp Med Biol. 2020;1253:223-57.

    • Drong AW, Lindgren CM, McCarthy MI. The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther. 2012;92(6):707-15.

    • Sapra A, Bhandari P. Diabetes Mellitus. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.; 2023.

    • Kowluru RA, Mohammad G. Epigenetic modifi cations in diabetes. Metabolism Clinical and Experimental. 2022;126:154920.

    • Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58(3):443-55.

    • Ceriello A, Prattichizzo F. Variability of risk factors and diabetes complications. Cardiovasc Diabetol. 2021;20(1):101.

    • Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98.

    • Rorbach-Dolata A, Kubis A, Piwowar A. Epigenetic modifi cations: An important mechanism in diabetic disturbances. Postepy Hig Med Dosw (Online). 2017;71(0):960-74.

    • Yamunadevi A, Pratibha R, Rajmohan M, Mahendraperumal S, Ganapathy N. Basics of Epigenetics and Role of Epigenetics in Diabetic Complications. J Pharm Bioallied Sci. 2021;13(Suppl 1):S336-s43.

    • Witkop CJ, Jr. RECENT ADVANCES IN DENTAL GENETICS. Journal of dental research. 1963;42:Suppl1262- 75.

    • Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457-63.

    • Robertson KD. DNA methylation and chromatin - unraveling the tangled web. Oncogene. 2002;21(35):5361-79.

    • Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nature reviews Genetics. 2002;3(6):415-28.

    • Koksoy H. Epigenetic changes may alter gene expression. In: Dalkilic M, editor. Academic Studies on Natural and Health Sciences 1ed: Gece Akademi; 2019.

    • Valente S, Liu Y, Schnekenburger M, Zwergel C, Cosconati S, Gros C, et al. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. Journal of medicinal chemistry. 2014;57(3):701-13.

    • Seo JY, Park YJ, Yi YA, Hwang JY, Lee IB, Cho BH, et al. Epigenetics: general characteristics and implications for oral health. Restorative dentistry & endodontics. 2015;40(1):14-22.

    • Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, et al. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Targeted oncology. 2020;15(3):261-78.

    • Huang ZH, Du YP, Wen JT, Lu BF, Zhao Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell death discovery. 2022;8(1):259.

    • Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O, Moradzadeh A, et al. Molecular Mechanisms and Biological Functions of siRNA. International journal of biomedical science : IJBS. 2017;13(2):48-57.

    • Drzewoski J, Kasznicki J, Trojanowski Z. The role of “metabolic memory” in the natural history of diabetes mellitus. Polskie Archiwum Medycyny Wewnetrznej. 2009;119(7-8):493-500.

    • Duraisamy AJ, Mishra M, Kowluru A, Kowluru RA. Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2018;59(12):4831-40.

    • Koksoy H. Can Our Cells Hear Us? Epigenetics, Neuroplasticity and Genetic Determinism. In: Dalkilic M, Koksoy H, editors. Insac World Health Sciences. 1 ed2022. p. 760-74.

    • Tzika E, Dreker T, Imhof A. Epigenetics and Metabolism in Health and Disease. Frontiers in genetics. 2018;9:361.

    • Stankov K, Benc D, Draskovic D. Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics. 2013;132(6):1112-22.

    • Čugalj Kern B, Trebušak Podkrajšek K, Kovač J, Šket R, Jenko Bizjan B, Tesovnik T, et al. The Role of Epigenetic Modifi cations in Late Complications in Type 1 Diabetes. Genes (Basel). 2022;13(4).

    • Sharma B, Kumar A, Sharma U, Pal D, Prashar S. The Potential Role of Gut Microbiota in the Pathogenesis of Type 2 Diabetes Mellitus via Epigenetics and Infl ammasome. Endocr Metab Immune Disord Drug Targets. 2022;22(14):1331-43.

    • Kaspar D, Hastreiter S, Irmler M, Hrabé de Angelis M, Beckers J. Nutrition and its role in epigenetic inheritance of obesity and diabetes across generations. Mamm Genome. 2020;31(5-6):119-33.

    • Davison GW, Irwin RE, Walsh CP. The metabolic-epigenetic nexus in type 2 diabetes mellitus. Free Radic Biol Med. 2021;170:194-206.

    • Dalfrà MG, Burlina S, Del Vescovo GG, Lapolla A. Genetics and Epigenetics: New Insight on Gestational Diabetes Mellitus. Front Endocrinol (Lausanne). 2020;11:602477.

    • Rosik J, Szostak B, Machaj F, Pawlik A. The role of genetics and epigenetics in the pathogenesis of gestational diabetes mellitus. Ann Hum Genet. 2020;84(2):114-24.

    • Alam F, Kamal MA, Islam MA, Banu S. Current Genetic and Epigenetic Insights into Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets. 2019;19(6):717-8.

    • Ge ZJ, Zhang CL, Schatten H, Sun QY. Maternal diabetes mellitus and the origin of non-communicable diseases in offspring: the role of epigenetics. Biol Reprod. 2014;90(6):139.

    • Hudec M, Dankova P, Solc R, Bettazova N, Cerna M. Epigenetic Regulation of Circadian Rhythm and Its Possible Role in Diabetes Mellitus. Int J Mol Sci. 2020;21(8).

    • Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 2019;15(6):327-45.

    Share This Chapter!