Release Date: 2024-04-09

Challenges Honeybees May Experience in the Face of Climate Change

Release Date: 2024-04-09

Climate change observed as a result of global warming changes the phenology of many living species. The sustainability of the reactions of organisms interacting with each other is impaired due to the inability to maintain synchronization between them. The quantity, diversity and functionality of bees, which have a very important place especially in terms of [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inImpacts of Climate Change on Bee and Bee Products
    First Page107
    Last Page139
    DOIhttps://doi.org/10.69860/nobel.9786053358978.7
    Page Count33
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Climate change observed as a result of global warming changes the phenology of many living species. The sustainability of the reactions of organisms interacting with each other is impaired due to the inability to maintain synchronization between them. The quantity, diversity and functionality of bees, which have a very important place especially in terms of pollination of wild plants and agricultural products, are negatively affected. Higher temperatures, changing rainfall patterns, increased weather extremes and range shifts undermine bee health through mechanisms such as altered phenology, reduced foraging, worsening disease effects and exposure to pesticides. Our study provides a general evaluation of how climate change can affect the phenology of both plants and bees, and what can be taken into consideration to overcome the problems experienced.

    Gulay Zulkadir (Author)
    Assistant Professor, Mersin University
    https://orcid.org/0000-0003-3488-4011
    3Dr. Lecturer; Mersin University Applied Technology and Management School of Silifke, Organic Farming Management Department

    • Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120, 321–326.

    • Amaral, G., Bushee, J., Cordani, U.G., Kawashita, K., Reynolds, J.H., Almeida, F.F.M.D.E., de Almeida, F.F.M., Hasui, Y., de Brito Neves, B.B., & Fuck, R.A. (2013). Summary for Policymakers. In Climate Change 2013— The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2013; Volume 369, pp. 1–30. ISBN 9789896540821.

    • Breeze, T.D., Bailey, A.P., Balcombe, K.G., & Potts, S.G. (2011). Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ., 142, 137–143.

    • Liu, R., Chen, D., Luo, S., Xu, S., Xu, H., Shi, X., Zou, Y. (2020). Quantifying pollination efficiency of flower-visiting insects and its application in estimating pollination services for common buckwheat. Agric. Ecosyst. Environ., 301, 107011.

    • Ilyasov, R. A., Lee, M. L., Takahashi, J. I., Kwon, H. W., & Nikolenko, A. G. (2020). A revision of subspecies structure of western honey bee Apis mellifera. Saudi Journal of Biological Sciences, 27(12), 3615-3621.

    • Becsi, B., Formayer, H., & Brodschneider, R. (2021) A biophysical approach to assess weather impacts on honey bee colony winter mortality. Royal Soc Open Sci, 8(9), 210618.

    • Izol, E., Haspolat, Y. K., & Gulcin, I. (2023). The Significance of Bee Products in Health. Orient Publications, 1, 1-149.

    • Izol, E. (2023). Phytochemicals in Honey and Health Effects. Honeybees, Plants and Health. Orient Publications, 1, 85-96.

    • Di Noi, A., Casini, S., Campani, T., Cai, G., & Caliani, I. (2021) Review on sublethal effects of environmental contaminants in honey bees (Apis mellifera), knowledge gaps and future perspectives. Int J Environ Res Public Health, 18(4), 1863.

    • Gizaw, G., Kim, Y., Moon, K., Choi, J.B., Kim, Y.H., & Park, J.K. (2020) Effect of environmental heavy metals on the expression of detoxification-related genes in honey bee Apis mellifera. Apidologie, 51, 664–674.

    • López-Uribe, M.M., Ricigliano, V.A., & Simone-Finstrom, M. (2020) Defining pollinator health: a holistic approach based on ecological, genetic, and physiological factors. Ann Rev Anim Biosci, 8, 269–294.

    • Oberreiter, H., & Brodschneider, R. (2020) Austrian COLOSS survey of honey bee colony winter losses 2018/19 and analysis of hive management practices. Diversity, 12(3), 99.

    • Costa, A., Veca, M., Barberis, M., Cicerinegri, L., & Tangorra, F.M. (2021) Predicting atmospheric cadmium and lead using honeybees as atmospheric heavy metals pollution indicators Results of a monitoring survey in Northern Italy. Ital J Anim Sci, 20(1), 850–858.

    • Ilijević, K., Vujanović, D., Orčić, S., Purać, J., Kojić, D., Zarić, N., & Čelić, T.V. (2021) Anthropogenic influence on seasonal and spatial var iation in bioelements and non-essential elements in honeybees and their hemolymph. Comp Biochem Physiol C Toxicol Pharmacol, 239, 108852.

    • Stanimirović, Z., Glavinić, U., Ristanić, M., Aleksić, N., Jovanović, N.M., Vejnović, B., & Stevanović, J. (2019) Looking for the causes of and solutions to the issue of honey bee colony losses. Acta Vet-Beogr, 69(1), 1–31

    • Hristov, P., Shumkova, R., Palova, N., & Neov, B. (2021) Honey bee colony losses: Why are honey bees disappearing? Sociobiology, 68(1), e5851–e5851.

    • Le Conte, Y., & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique-Office International des Epizooties, 27(2), 499-510.

    • Soroye, P., Newbold, T., & Kerr, J. (2020). Climate change contributes to widespread declines among bumble bees across continents. Science, 367(6478), 685-688.

    • Belsky, J., & Joshi, N. K. (2020). Effects of fungicide and herbicide chemical exposure on Apis and non-Apis bees in agricultural landscape. Frontiers in Environmental Science, 8, 522888.

    • Hatjina, F., Costa, C., Büchler, R., Uzunov, A., Drazic, M., Filipi, J., & Kezic, N. (2014). Population dynamics of European honey bee genotypes under different environmental conditions. Journal of Apicultural Research, 53(2), 233-247.

    • 31. Hurley, L.L., McDiarmid, C.S., Friesen, C.R., Griffith, S.C., & Rowe, M. (2018). Experimental heatwaves negatively impact sperm quality in the zebra finch Proc. Biol. Sci., 285. https://doi.org/10.1098/rspb.2017.2547

    • Langowska, A., Zawilak, M., Sparks, T.H., Glazaczow, A., Tomkins, P.W., & Tryjanowski, P. (2016). Long-term effect of temperature on honey yield and honeybee phenology. Int J Biometeorol. 61(6), 1125-1132.

    • Flores, J.M., Gil-Lebrero, S., Gámiz, V., Rodríguez, M.I., Ortiz, M.A., Quiles, F.J. (2019). Effect of the climate change on honey bee colonies in a temperate Mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment. Sci. Total Environ., 653, 1111-1119, 10.1016/j.scitotenv.2018.11.004

    • Van Dooremalen, C., Gerritsen, L., Cornelissen, B., van der Steen, J. J., van Langevelde, F., & Blacquiere, T. (2012). Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PloS one, 7(4), e36285.

    • Genersch, E. et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–352 (2010).

    • Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L. & Neumanna, P. (2012). Dead or alive: Deformed wing virus and varroa destructor reduce the life span of winter honeybees. Appl. Environ. Microbiol. 78, 981–987.

    • Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. 347: 1255957.

    • Dibble, A. C., Drummond, F. A., & Stack, L. B. (2020). Plant origin and other attributes impact bee forage patterns in a common garden study in Maine, United States; Part II. Environmental Entomology, 49(3), 738-752.

    • Venturini, E. M., Drummond, F. A., Hoshide, A. K., Dibble, A. C., & Stack, L. B. (2017). Pollination reservoirs in Maine lowbush blueberry. J. Econ. Entomol. 110, 333–346. https://doi.org/10.1093/jee/tow285

    • Kołtowski, Z. (2002). Beekeepingvalue of recently cultivated winter rape seed cultivars. Journal of Apicultural Research, 46, 23–32. http://www.jas. org.pl:81/pdf/140?filename=jas3_2_2002.pdf

    • Scaven, V. L. & Rafferty, N. E. (2013). Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr. Zool. 59, 418–426.

    • Mu, J., Peng, Y., Xi, X., Wu, X., Li, G., Niklas, K.J., & Sun, S. (2015). Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Ann. Bot. 116, 899–906.

    • Thompson, H. M. (2017). Interaction between pesticides and other factors in effects on bees. EFSA Supporting Publications, 9(9), 1–205.

    • Yörük, A., & Şahinler, N. (2013). Potentıal Effects of Global Warmıng on the Honey Bee. Uludag Bee Journal, 13 (2): 79-87.

    • Weaver, S. A., & Mallinger, R. E. (2022). A specialist bee and its host plants experience phenological shifts at different rates in response to climate change. Ecology, 103(5), e3658

    • Maria, B.O., Ikutal, A., Agbachom, E.E., & Ubi, G.M. (2019) Strategies for mitigating climate change effect on honey bee productivity in Southern Nigeria. Annual Research & Review in Biology, 1-9.

    • Nürnberger, F., Härtel, S. & Steffan-Dewenter, I. (2019). Seasonal timing in honey bee colonies: Phenology shifts affect honey stores and varroa infestation levels. Oecologia, 189, 1121–1131.

    • Switanek, M., Crailsheim, K., Truhetz, H. & Brodschneider, R. (2017). Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Sci. Total Environ. 579, 1581– 1587.

    • Baude, M., Kunin, W. E., Boatman, N. D., Conyers, S., Davies, N., Gillespie, M. A. K., ... & Memmott, J. (2016). Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature, 530(7588),

    • Çelik, S. (2023b). Drought stress effect on potato (Solanum Tuberosum L.) genotypes leaves content using restricted water regime. Academic Research and Reviews in Agriculture, Forestry and Aquaculture Sciences. Platannus, ISBN:978-625-6517-64-6, 1; 407.

    • Spinoni, J., Naumann, G., Vogt, J. V., & Barbosa, P. (2018). Meteorological droughts in Europe: events and impacts. European Commission, Joint Research Centre.

    • Altermatt, F. (2010). Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B Biol. Sci., 277, 1281–1287.

    • Hedhly, A., Hormaza, J.I. & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends Plant Sci., 14, 30–36.

    • Vanbergen A.J., Garratt M.P., Vanbergen A.J., Baude M., Biesmeijer J.C., Britton N.F., Brown M.J.F., Brown M., Bryden J., Budge G.E., Bull J.C., Carvell C., Challinor A.J., Connolly C.N., Evans D.J., Feil E.J., Garratt Mike P., Greco M.K., Heard M.S., Jansen V.A.A., Keeling M.J., Kunin W.E., Marris G.C., Memmott J., Murray J.T., Nicolson S.W., Osborne J.L., Paxton R.J., Pirk C.W.W., Polce C., Potts S.G., Priest N.K., Raine N.E., Roberts S., Ryabov E.V., Shafir S., Shirley M.D.F., Simpson S.J., Stevenson P.C., Stone G.N., Termansen M., & Wright G.A. (2013). Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ., 11(5), 251–259.

    • Van Dyck, H., Bonte, D., Puls, R., Gotthard, K. & Maes, D. (2015). The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos, 124, 54–61.

    • Doull KM. 1976. The effects of different humidities on the hatching of the eggs of honeybees. Apidologie, 7, 61–6.

    Share This Chapter!