Release Date: 2024-06-03

Quantitative and Qualitative Investigation of Some Protein Sources Used in Fish Feeds

Release Date: 2024-06-03

Protein in fish feed is one of the most important nutrients for the healthy growth and development of fish. Protein sources are divided into two main groups: animal and plant. Animal proteins are of high quality and contain all the amino acids that fish need. Vegetable proteins, on the other hand, are cheaper and sustainable. [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inAlternative Protein Sources
    First Page169
    Last Page180
    DOIhttps://doi.org/10.69860/nobel.9786053359289.9
    Page Count12
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Protein in fish feed is one of the most important nutrients for the healthy growth and development of fish. Protein sources are divided into two main groups: animal and plant. Animal proteins are of high quality and contain all the amino acids that fish need. Vegetable proteins, on the other hand, are cheaper and sustainable. Historically, fish meal and oil were given to both carnivorous and herbivorous fish when they were juveniles to meet their high protein needs. However, due to excessive use, sustainability concerns have arisen, and alternative protein sources have begun to be investigated.

    Mahinur Kirici (Author)
    Associate Professor, Bingöl University
    https://orcid.org/0000-0003-4642-7387
    3Mahinur Kırıcı, who graduated from Atatürk University, Faculty of Science and Letters, Department of Chemistry, works in the basic field of Biochemistry. The author, who completed his master’s and doctorate degrees at Atatürk University, Institute of Science and Technology, Department of Chemistry, Department of Biochemistry, is currently an Associate Professor at Bingöl University. Dr. It works as.

    Mehmet Resit Taysi (Author)
    Researcah Assistant, Bingöl University
    https://orcid.org/0000-0002-1072-4059
    3Mehmet Reşit Taysı, who graduated from Atatürk University Faculty of Agriculture, Department of Fisheries in 2005, works in the basic field of aquaculture. He completed his master’s degree in fish digestive system histology. The author, who completed his doctorate on DNA damage in trout, is currently working as a Dr. at Bingöl University. It works as.

    • Jackson, A. (2009). The continuing demand for sustainable fishmeal and fish oil in aquaculture diets, International Aquafeed 12, 32-36.

    • Kokou, F., & Fountoulaki, E. (2018). Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients, Aquaculture 495, 295-310.

    • Irabor, A. E., Obakanurhie, O., Nwachi, F. O., Ekokotu, P. A., Ekelemu, J. K., Awhefeada, O. K., Adeleke, L. M., Pierre Jrn, H., & Adagha, O. (2022). Duckweed (Lemna minor) meal as partial replacement for fish meal in catfish (Clarias gariepinus) juvenile diets, Livestock Research for Rural Development 34, 2022.

    • Scarborough, P., Clark, M., Cobiac, L., Papier, K., Knuppel, A., Lynch, J., Harrington, R., Key, T., & Springmann, M. (2023). Vegans, vegetarians, fish-eaters and meat-eaters in the UK show discrepant environmental impacts, Nature Food 4, 565-574.

    • Celada, J. s. D., & Fuertes, J. B. (2016). Evaluation of pea protein concentrate as partial replacement of fish meal in practical diets for juvenile tench (Tinca tinca L.), Aquaculture research 47.

    • Abrini, J., Naveau, H., & Nyns, E.-J. (1994). Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide, Archives of Microbiology 161, 345-351.

    • Li, M., Liang, H., Xie, J., Chao, W., Zou, F., Ge, X., & Ren, M. (2021). Diet supplemented with a novel Clostridium autoethanogenum protein have a positive effect on the growth performance, antioxidant status and immunity in juvenile Jian carp (Cyprinus carpio var. Jian), Aquaculture reports 19, 100572.

    • Zhu, S., Gao, W., Wen, Z., Chi, S., Shi, Y., Hu, W., & Tan, B. (2022). Partial substitution of fish meal by Clostridium autoethanogenum protein in the diets of juvenile largemouth bass (Micropterus salmoides), Aquaculture Reports 22, 100938.

    • Jiang, X., Yao, W., Yang, H., Tan, S., Leng, X., & Li, X. (2021). Dietary effects of Clostridium autoethanogenum protein substituting fish meal on growth, intestinal histology and immunity of Pacific white shrimp (Litopenaeus vannamei) based on transcriptome analysis, Fish Shellfish Immun 119, 635-644.

    • Chen, Y., Sagada, G., Xu, B., Chao, W., Zou, F., Ng, W. K., Sun, Y., Wang, L., Zhong, Z., & Shao, Q. (2020). Partial replacement of fishmeal with Clostridium autoethanogenum protein in the diet for juvenile black sea bream (Acanthopagrus schlegelii), Aquaculture Research 51, 1000-1011.

    • Yao, W., Li, X., Zhang, X., Li, M., Wang, Y., He, H., & Leng, X. (2024). The complete replacement of fish meal with Clostridium autoethanogenum protein in practical diet did not affect the growth, but reduced the flesh quality of Pacific white shrimp, Litopenaeus vannamei, Animal Feed Science and Technology 310, 115919.

    • Han, F., Xu, C., Qi, C., Lin, Z., Li, E., Wang, C., Wang, X., Qin, J. G., & Chen, L. (2020). Sodium butyrate can improve intestinal integrity and immunity in juvenile Chinese mitten crab (Eriocheir sinensis) fed glycinin, Fish Shellfish Immun 102, 400-411.

    • Li, M. H., & Robinson, E. H. (2006). Use of cottonseed meal in aquatic animal diets: a review, North American Journal of Aquaculture 68, 14-22.

    • Han, F., Qian, J., Qu, Y., Li, Z., Chen, H., Xu, C., Zhang, H., Qin, J. G., Chen, L., & Li, E. (2022). Partial replacement of soybean meal with fermented cottonseed meal in a low fishmeal diet improves the growth, digestion and intestinal microbiota of juvenile white shrimp Litopenaeus vannamei, Aquaculture Reports 27, 101339.

    • Djissou, A. S. M., Tossavi, C. E., Odjo, I. N., Koshio, S., & Fiogbe, E. D. (2019). Use of Moringa oleifera leaves and maggots as protein sources in complete replacement for fish meal in Nile tilapia (Oreochromis niloticus) diets, Turk J Fish Aquat Sc 20, 177-183.

    • González-Pérez, S., & Arellano, J. B. (2009). Vegetable protein isolates. In Handbook of hydrocolloids (pp. 383-419). Elsevier.

    • Goneim, G. A., Ibrahim, F. Y., & El-Shehawy, S. M. (2011). Carrot leaves: antioxidative and nutritive values, Journal of Food and Dairy Sciences 2, 201-211.

    • Aramrueang, N., Zicari, S. M., & Zhang, R. (2017). Response surface optimization of enzymatic hydrolysis of sugar beet leaves into fermentable sugars for bioethanol production, Advances in Bioscience and Biotechnology 8, 51.

    • Ayyat, M. S., A Abdel‐Rahman, G., Ayyat, A. M. N., Abdel‐Rahman, M. S., & Al‐ Sagheer, A. A. (2021). Evaluation of leaf protein concentrate from Beta vulgaris and Daucus carota as a substitute for soybean meal in Oreochromis niloticus fingerlings diets. Aquaculture research, 52(7), 3256-3269.

    • Ayyat, M. S., Ayyat, A. M. N., Abdel-Rahman, M. S., & Al-Sagheer, A. A. (2024). Appraisal of leaf protein concentrate derived from sugar beet and carrot as a novel fish meal substitute for juvenile Nile tilapia (Oreochromis niloticus), Animal Feed Science and Technology 307, 115833.

    • Dawood, M. A., Habotta, O. A., Elsabagh, M., Azra, M. N., Van Doan, H., Kari, Z. A., & Sewilam, H. (2022). Fruit processing in the aquafeed industry: a feasible strategy for aquaculture sustainability, Reviews in Aquaculture 14, 1945-1965.

    • Tibbetts, S. M., MacPherson, M. J., Park, K. C., Melanson, R. J., & Patelakis, S. J. (2023). Composition and apparent digestibility coefficients of essential nutrients and energy of cyanobacterium meal produced from Spirulina (Arthrospira platensis) for freshwater-phase Atlantic salmon (Salmo salar L.) pre-smolts, Algal Research 70, 103017.

    • Esmaili, Z., Barikbin, B., Shams, M., Alidadi, H., Al-Musawi, T. J., & Bonyadi, Z. (2023). Biosorption of metronidazole using Spirulina platensis microalgae: process modeling, kinetic, thermodynamic, and isotherm studies, Applied Water Science 13, 63.

    • Raji, A. A., Jimoh, W. A., Bakar, N. A., Taufek, N. M., Muin, H., Alias, Z., Milow, P., & Razak, S. A. (2020). Dietary use of Spirulina (Arthrospira) and Chlorella instead of fish meal on growth and digestibility of nutrients, amino acids and fatty acids by African catfish, Journal of Applied Phycology 32, 1763-1770.

    • Carneiro, W. F., Castro, T. F. D., Reichel, T., de Castro Uzeda, P. L., MartínezPalacios, C. A., & Murgas, L. D. S. (2022). Diets containing Arthrospira platensis increase growth, modulate lipid metabolism, and reduce oxidative stress in pacu (Piaractus mesopotamicus) exposed to ammonia. Aquaculture, 547, 737402.

    • Zhang, W., Deng, Y., Yang, Z., Kong, Q., Liu, P., Liao, H., & Tang, H. (2024). Effects of partial replacement of fishmeal with Spirulina platensis powder and addition of Spirulina platensis polysaccharide on growth, nutrition, antioxidant capacity and gut microbiota of Micropterus salmoides. Aquaculture, 586, 740802.

    • Sorjonen, J. M., Valtonen, A., Hirvisalo, E., Karhapää, M., Lehtovaara, V. J., Lindgren, J., Marnila, P., Mooney, P., Mäki, M., & Siljander-Rasi, H. (2019). The plant-based by-product diets for the mass-rearing of Acheta domesticus and Gryllus bimaculatus. PLoS One, 14(6), e0218830.

    • Jabir, M. A. R., Jabir, S. A. R., & Vikineswary, S. (2012). Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile, African Journal of Biotechnology 11, 6592-6598.

    • Perera, G. C., & Bhujel, R. C. (2022). Replacement of fishmeal by house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) meals: Effect for growth, pigmentation, and breeding performances of guppy (Poecilia reticulata), Aquaculture Reports 25, 101260.

    • Khieokhajonkhet, A., Thammang, S., Aeksiri, N., Kaneko, G., Tatsapong, P., & Phromkunthong, W. (2024). Fish meal replacement by Brachytrupes portentosusas for Oreochromis niloticus: Effect on growth, feed utilization, fatty acid profiles, hematology, and histological changes, Animal Feed Science and Technology 308, 115873.

    • Gjøsund, S., Skjermo, J., Forbord, S., Jafarzadeh, S., Sletta, H., Aasen, I., Hagemann, A., Chauton, M., Aursand, I., & Evjemo, J. (2020). Bærekraftig Fôr Til Norsk Laks. Sintef Ocean: Trondheim, Norway, 117.

    • Fernández, A., Grienke, U., Soler-Vila, A., Guihéneuf, F., Stengel, D. B., & Tasdemir, D. (2015). Seasonal and geographical variations in the biochemical composition of the blue mussel (Mytilus edulis L.) from Ireland. Food chemistry, 177, 43-52.

    • Sartipiyarahmadi, S., Prabhu Philip, A. J., Forshei, A. N., Sveier, H., Steinsund, S., Kleppe, M., Lock, E.-J., Madaro, A., Hansen, T. J., Strand, Ø., Wiech, M., Jakobsen, J. V., & Remø, S. C. (2024). Blue mussel (Mytilus edulis) silage, a possible low trophic marine protein source for Atlantic salmon (Salmo salar L.). Aquaculture, 740829.

    • Stadtlander, T., Tschudi, F., Seitz, A., Sigrist, M., Refardt, D., & Leiber, F. (2023). Partial replacement of fishmeal with duckweed (Spirodela polyrhiza) in feed for two carnivorous fish species, Eurasian perch (Perca fluviatilis) and rainbow trout (Oncorhynchus mykiss), Aquaculture Research 2023.

    • Stejskal, V., Tran, H. Q., Prokesova, M., Gebauer, T., Giang, P. T., Gai, F., & Gasco, L. (2020). Partially defatted Hermetia illucens larval meal in diet of Eurasian perch (Perca fluviatilis) juveniles, Animals 10, 1876

    Share This Chapter!