Release Date: 2024-06-03

Alternative Protein Sources and the Importance of Animal Proteins in Human Nutrition

Esma Nur Bulut (Author), Nilgun Ertas (Author)

Release Date: 2024-06-03

Increasing world population and changing climatic conditions are making human nutrition more and more problematic. Greenhouse gas emissions, overuse of water resources and misuse of land are the disadvantages of animal-based nutrition. Therefore, the search for alternative sources for protein, which has an important share in human nutrition, continues. Major alternative protein sources include legumes, [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inAlternative Protein Sources
    First Page203
    Last Page225
    DOIhttps://doi.org/10.69860/nobel.9786053359289.11
    Page Count23
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Increasing world population and changing climatic conditions are making human nutrition more and more problematic. Greenhouse gas emissions, overuse of water resources and misuse of land are the disadvantages of animal-based nutrition. Therefore, the search for alternative sources for protein, which has an important share in human nutrition, continues. Major alternative protein sources include legumes, cereals, grains, seeds, nuts, microalgae, duckweed, artificial meat, edible insects and single cell proteins. These alternative protein sources offer health, sustainability and economic advantages. The halal status of artificial meat and edible insects is a matter of debate. While there are clear opinions that grasshoppers are halal among insects, a more detailed examination is needed on the halalness of artificial meat. In order to consume the products produced from these sources, people will need to be convinced of their halalness.

    Esma Nur Bulut (Author)
    Bingöl University
    https://orcid.org/0000-0002-1740-7152
    3Esma Nur Bulut graduated from Karamanoğlu Mehmetbey University, Department of Food Engineering in 2019. In the same year, she started her master’s degree in grain technology at Necmettin Erbakan University, Department of Food Engineering. In 2021, she graduated from master’s degree. In 2022, he started his doctorate education at Necmettin Erbakan University. In 2023, he started working as a lecturer at Bingöl University.

    Nilgun Ertas (Author)
    Professor, Necmettin Erbakan University
    https://orcid.org/0000-0002-0671-2485
    3Nilgün Ertaş graduated from Selçuk University, Department of Food Engineering in 2001. She completed her master’s and doctoral studies in the field of cereal technology at Selçuk University. In 2002, she worked as a research assistant at Selçuk University and in 2012 she worked as an assistant professor at Necmettin Erbakan University. He is currently working as a professor at Necmettin Erbakan University, Department of Food Sciences.

    • Dağ A, Coşkun A., (2022). Sağlıklı beslenmede protein alımının önemi. Editör: Mercanlıgil SM. Proteinlerin Sağlıkta, Hastalıklarda ve Bazı Özel Durumlarda Önemi. 1. Baskı. Ankara: Türkiye Klinikleri. 1-6.

    • Eskici G., (2020). Protein ve egzersiz- Yeni yaklaşımlar. The Journal of Physical Education and Sport Sciences. 18(3): 1-13.

    • Pulluk E., (2021). Beslenmede alternatif protein kaynakları. Gastronomi Araştırmaları. Editör: Yener, Oğan. 92-102.

    • Shang N, Chaplot S, Wu, J., (2018). Food proteins for health and nutrition. Book Chapter: Proteins in food processing. Editor: Rickev y. Yada. 301-336.

    • Alaca K, Bayrak N, Akyol N, Baştürk A., (2021). Nanotechnology applications used in the food ındustry, safety of nanofood and nanoemulsion technique. Uluslararası Gıda, Tarım ve Hayvan Bilimleri Dergisi. 1(1): 19-30.

    • Okur H.C, Onay, T, Uçar, A., (2023). Alternatif protein kaynağı: Yapay et. BANÜ Sağlık Bilimleri ve Araştırmaları Dergisi. 5(3): 272-281.

    • Alaca K, Okumuş E, Bakkalbaşı E, Javıdıpour I., (2022). Phytochemicals and antioxidant activities of twelve edible wild plants from Eastern Anatolia, Turkey. Food Science and Technology. 1-7.

    • Van der Spiegel M, Noordam, M. Y, Van der Fels-Klerx H. J., (2012). Safety of Novel Protein Source (Insects, Microalgae, Seaweed. Duckweed and Rapeseed) and Legislative Aspect for Their Application in Food and Feed Production. Comprehensive Reviews in Food Science and Food Safety. 12(6): 662-678.

    • Demirci, M., (2012). Gıda Kimyası Kitabı.

    • Seyhan S, Nakilcioğlu E, Ötleş S., (2024). Geleceğin alternatif protein kaynakları. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 12: 153-174.

    • Sá G.A, Moreno Y. M. F, Carciofi B. A. M., (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology. 97: 170- 184.

    • Hagmann D, Siegrist M, Hartmann C., (2019). Meat avoidance: motives, alternative proteins and diet quality in a sample of Swiss consumers. Public health nutrition. 22 (13): 2448-2459.

    • Shan Z, Rehm C.D, Rogers G, Ruan M, Wang D.D, Hu F.B, ..., and S. N.Bhupathiraju, (2019). Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999-2016. Jama. 322 (12): 1178-1187.

    • Tang Z. X, Ying R.F, Lv B.F, Yang L.H, Xu Z, Yan L.Q, ..., and Wei Y. S., (2021). Flaxseed oil: extraction, health benefits and products. Quality Assurance and Safety of Crops & Foods. 13 (1): 1-19.

    • Rabetafika H.N, Remoortel V.V, Danthine S, Paquot M, Blecker C., (2011). Flaxseed proteins: food uses and health benefits. Int J Food Sci Technol. 46: 221- 228.

    • Symoniuk E, Wroniak M, Napiórkowska K, Brzezińska R, Ratusz K., (2022). Oxidative stability and antioxidant activity of selected cold-pressed oils and oils mixtures. Foods. 11(11): 1-18.

    • Lan Y, Ohm J.B, Chen B, Rao J., (2020). Physicochemical properties and aroma profiles of flaxseed proteins extracted from whole flaxseed and flaxseed meal. Food Hydrocolloids. 104: 105731.

    • Bonny S. P. F, Gardner G. E, Pethrick D. W, Hocquette J.F., (2015). What is Artificial Meat and What Does It Mean for the Future of the Meat Industry? Journal of Integrative Agriculture. 14(2): 255-263.

    • Pandurangan M, Kim D. H., (2015). A novel approach for in vitro meat production. Applied Microbiology and Biotechnology. 99(3): 5391-5395.

    • Sürek E, Uzun P, (2020). Geleceğin alternatif protein kaynağı: Yapay et. Akademik Gıda. 18(2): 209-216.

    • Kumar M, Tomar M, Punia S, Grasso S, Arrutia F, Choudhary J, ..., and Amarowicz R,(2021). Cottonseed: A sustainable contributor to global protein requirements. Trends in Food Science & Technology. 111: 100-113.

    • Kumar M, Hasan M, Choyal P, Tomar M, Gupta O.P, Sasi M, ..., and Kennedy J. F., (2022). Cottonseed feedstock as a source of plant-based protein and bioactive peptides: evidence based on biofunctionalities and industrial applications. Food Hydrocolloids. 131: 107776.

    • Cheng H.N, He Z, Ford C, Wyckoff W, Wu Q, (2020). A review of cottonseed protein chemistry and non-food applications. Sustainable Chemistry. 1 (3): 256-274.

    • Raboanatahiry N, Li H, Yu L, Li M, (2021). Rapeseed (Brassica napus): processing, utilization, and genetic improvement. Agronom. 11 (9); 1776.

    • Kalaydzhiev H, Ivanova P, Stoyanova M, Pavlov A, Rustad T, Silva C.L, Chalova V.I, (2020). Valorization of rapeseed meal: influence of ethanol antinutrients removal on protein extractability, amino acid composition and fractional profile. Waste and biomass valorization. 11(6): 2709-2719.

    • Day L, (2011). Wheat gluten: production, properties and application. In G. O. Phillips, & P. A. Williams (Eds.), Handbook of food proteins. Oxford: Woodhead Publishing. 267-288.

    • Wrigley C. W, (1996). Biopolymers e giant proteins with flour power. Nature. 381: 738-739.

    • Day L, (2013) Proteins from land plants-potential resources for human nutrition and food security, Trends in Food Science. 32: 25-42.

    • Lawton J. W., (2002). Zein: a history of processing and use. Cereal Chemistry. 79: 1-18.

    • Shukla R, Cheryan M., (2001). Zein: the industrial protein from corn. Industrial Crops and Products. 13: 171-192.

    • Baik B. K, (2008). Ullrich S. E. Barley for food: characteristics, improvement, and renewed interest. Journal of Cereal Science. 48: 233-242.

    • Shih, F. F., (2003). An update on the processing of high-protein rice products. Nahrung-Food. 47; 420-424.

    • Berghofer E, Schoenlechner R., (2002). Grain amaranth. In P. S. Belton & J. R. N. Taylor (Eds.), Pseudocereals and Less Common Cereals (pp.219-253). Springer, Berlin, Heidelberg.

    • Dogu-Baykut E., (2021). Bazı Tahıl Benzeri Ürünlerin Besin İçeriği ve Gıda Endüstrisinde Kullanımı. Avrupa Bilim ve Teknoloji Dergisi. (23): 89-98.

    • Mlakar S. G, Turinek M, Jakop M, Bavec M, Bavec F., (2009). Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura. 6(4): 43-53.

    • Yu D, Chen J, Ma J, Sun H, Yuan Y, Ju Q, Teng Y, Yang M, Li W, Fujita K, Tatsumi E., (2018). Effects of different milling methods on physicochemical properties of common buckwheat flour. LWT. 92: 220-226.

    • Steadman K.J, Burgoon M.S, Lewis B.A, Edwardson S.E, Obendorf R.L., (2001). Minerals, phytic acid, tannin and rutin in buckwheat seed milling fractions. Journal of the Science of Food and Agriculture. 81(11): 1094-1100.

    • Aubrecht E, Biacs P.A., (2001). Characterization of buckwheat grain proteins and its products. Acta Alimentaria. 30(1): 71-80.

    • Costantini L, Lukšic L, Molinari R, Kreft I, Bonafaccia G, Manzi L, Merendino N., (2014). Development of gluten-free bread using tartary buckwheat and chiaflour rich in flavonoids and omega-3 fatty acids as ingredients. Food Chem.. 165: 232-240.

    • Kılıç S, Elmacı Y., (2018). Karabuğday: Bileşimi ve gıdalarda kullanılması. Türk Tarım –Gıda Bilim ve Teknoloji Dergisi. 6(10):1388-1401.

    • Miranda M, Vega-Gálvez A, Quispe-Fuentes I, Rodríguez M.J, Maureira H, Martínez E.A., (2012). Nutritional aspects of six quinoa (Chenopodium quinoa Willd.) ecotypes from three geographical areas of Chile. Chilean Journal of Agricultural Research. 72(2): 175-181.

    • Tan M, (2013). Yöndem Z. İnsan ve hayvan beslenmesinde yeni bir bitki: Kinoa (Chenopodium quinoa Willd.). Alınteri Zirai Bilimler Dergisi. 25: 62-66.

    • Demir M.K, (2016). Kılınç M. Kinoa: Besinsel ve antibesinsel özellikleri. Journal of Food and Health Science. 2(3): 104-111.

    • Ranhotra G.S, Gelroth J.A, Glaser B.K, Lorenz K.J, Johnson D.L., (1993). Composition and protein nutritional quality of quinoa. Cereal Chemistry. 70: 303-305.

    • Repo-Carrasco R, Espinoza C, Jacobsen S.E., (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodiumpallidicaule). Food Reviews International. 19(1-2): 179-189.

    • Schoenlechner R, Drausinger J, Ottenschlaeger V, Jurackova K, Berghofer E., (2010). Functional properties of gluten-free pasta produced from amaranth, quinoa and buckwheat. Plant Foods for Human Nutrition. 65(4): 339-349.

    • Köten M, Karahan A.M, Satouf M., (2022). Glutensiz gıda kayanğı olarak tahıl benzeri tohumlar. Cukurova 8th Internatıonal Scıentıfıc Researches Conference April 15-17. Adana, Turkey

    • Chauhan A, Saxena D.C, Singh S., (2016). Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies. Cogent Food & Agriculture. 2(1):1125773.

    • Duran M.Ö, Özçelik S, Certel M, Erbaş M., (2004). Ticari Sartlarda Ekmek Üretiminde Patates ve Yulaf Unu Kullanmanın Hamur ve Ekmek Özelliklerine Etkileri. Gıda. 29(2): 139-147.

    • Yaver E, Ertaş N., (2013). Yulafın bileşimi, hububat endüstrisinde kullanım alanları ve insan sağlığı üzerine etkileri. Gıda ve Yem Bilimi Teknolojisi Dergisi. (13): 41- 50.

    • Singh R, De S, Belkheir A., (2013). Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview. Critical Reviews in Food Science and Nutrition. 53(2): 126-144.

    • Karaman R, Akgün İ, Türkay C., (2020). İnsan beslenmesinde alternatif besin kaynağı: Yulaf. Türk Bilim ve Mühendislik Dergisi. 2(2): 78-85.

    • Aydın E., (2009). Yulaf katkısının eriştenin kalite kriterlerine etkisi. Uludağ University Institute of Science and Technology. Master’s Thesis. Bursa.

    • Ma Z, Boye J. I, Simpson B. K, Prasher S. O, Monpetit D, Malcolmson L., (2011). Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Research International. 44: 2534-2544.

    • Sanjeewa W. G. T, Wanasundara J. P. D, Pietrasik Z, Shand P. J., (2010). Characterization of chickpea (Cicer arietinum L.) flours and application in low-fat pork bologna as a model system. Food Research International. 43: 617-626.

    • Çetiner M, Ersus Bilek E., (2018). Bitkisel protein kaynakları. Çukurova Journal Agricultural Food Science. 33(2): 111-126.

    • Rooney L. W. Sorghum. In K. Kulp, & J. G. Ponte, (2000). Jr. (Eds.), Handbook of cereal science and technology (2nd ed.). New York: Marcel Dekker. 149-175.

    • Huong N. T. M, Hoa P. N, Hung P. V., (2021). Varying amylose contents affect the structural and physicochemical characteristics of starch in mung bean. International Journal of Food Properties. 4 (1): 737-748.

    • Liu Y, Xu M, Wu H, Jing L, Gong B, Gou M, ..., and Li W., (2021). The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. Journal of food science and technology. 55 (12): 5142-5152.

    • Luo J, Xu Q, Lin S, Luo R, Yang B, Wang W, Wang Y., (2020). Physicochemical properties of soybean-based diacylglycerol before and after dry fractionation. International Food Research Journal. 27 (3): 497-504.

    • Taş B, Şengülendi F.T., (2023). Farklı LED ışıklar altında yetiştirilen köksüz su mercimeğinin (Wolffia arrhiza) dumas yöntemi kullanılarak ham protein içeriğinin belirlenmesi. 6 (3): 189-200.

    • Yılmaz E, Akyurt İ, Günal G., (2004). Use of Duckweed, Lemna Minor, as a Protein Feedstuff in Practical Diets for Common Carp, Cyprinus Carpio, Fry. Turkish Journal of Fisheries and Aquatic Sciences. 105-109.

    • Rahman M. A, Hasegawa H., (2011). Phytoremediation Using Floating Macrophytes. Chemosphere. 83 (5); 633-646.

    • Farhoomand D, Okay A, Aras E.S, Büyük İ., (2022). Yapay et üretimi ve gelecek vizyonu.Food and Health. 8 (3): 260-272.

    • Mc Clements D.J., (2020). Future foods: How modern science is transforming the way we eat. Food & Function. 11(3): 1933-1945.

    • Egbert R, Borders C., (2006). Achieving success with meat analogs. Food Technology (Chicago). 60(1): 28-34.

    • Hoek A.C, Luning P.A, Stafleu A, Graaf C., (2004). Food-related lifestyle and health attitudes of Dutch vegetarians, non-vegetarian consumers of meat substitutes, and meat consumers. Appetite. 42(3): 265-272.

    • Bredahl L, Grunert K.G, Fertin C., (1998). Relating consumer perceptions of pork quality to physical product characteristics. Food Quality and Preference. 9(4): 273-281.

    • Verbeke W, Pérez-Cueto F.J, Barcellos M.D, Krystallis A, Grunert K.G., (2010). European citizen and consumer attitudes and preferences regarding beef and pork. Meat Science. 84(2): 284-292.

    • Purslow P.P., (2020). The structure and role of intramuscular connective tissue in muscle function. Frontiers in Physiology. 11: 495.

    • FAO., (2013). Edible insects: Future prospects for food and feed security. Forestry paper. 171:1-154.

    • Mankan E., (2017). Gastronomide Yeni Trendler-Yenilebilir Böcekler. Journal of Turkish Studies. 12 (3): 425-440.

    • Muslu M., (2020). Sağlığın geliştirilmesi ve sürdürülebilir beslenme için alternatif bir kaynak: Yenilebilir böcekler. The Journal of Food. 45(5): 1009-1018.

    • Baş A, Peksever D, EI S.N., (2021). Sürdürülebilir protein kaynakları: Bitki, böcek, yapay et ve tek hücre proteinleri. 3.Uluslararası Türk Dünyası Fen Bilimleri ve Mühendislik Kongresi, 14-15 Haziran. TURK-COSE 1-8.

    • Halloran A, Flore R, Vantomme P, Roos N., (2018). Edible Insects in Sustainable Food Systems. ISBN 978-3-319-74011-9.

    • Gahukar R. T., 2016. Chapter 4 - Edible Insects Farming: Efficiency and Impact on Family Livelihood, Food Security, and Environment Compared With Livestock and Crops. In A. T. Dossey, J. A. Morales-Ramos ve M. G. Rojas (Editörler). Insects as Sustainable Food Ingredients. 85-111. San Diego: Academic Press.

    • Boulos S, Tännler A, Nyström L., (2020). Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Frontiers in Nutrition. 7(89).

    • Kouřimská L, (2016). Adámková A.Nutritional and sensory quality of edible insects. NFS Journal. 4: 22-26.

    • FDA, (2016). Frequently Asked Questions About GRAS for Substances Intended for Use in Human or Animal Food: Guidance for Industry.

    • Fasolin L.H, Pereira R.N, Pinheiro A.C, Martins J. T, Andrade C, Ramos O. Vicente A., (2019). Emergent food proteins–Towards sustainability, health and innovation. Food Research International. 125, 108586.

    • Laurens L.M, Markham J, Templeton D.W, Christensen E.D, Van Wychen S, Vadelius E.W, . . . Pienkos P.T., (2017). Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction. Energy & Environmental Science. 10(8): 1716-1738.

    • Sharif M, Zafar M.H, Aqib A.I, Saeed M, Farag M.R. Alagawany M., (2021). Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture. 531: 735885.

    • Demirel R, Şentürk Demirel D., (2018). Tek hücre proteinlerinin insan ve hayvan beslemede kullanımı. Iğdır Univ. J. Inst. Sci. Tech.. 8(3): 327-336.

    • Zubi W., (2005). Production of single cell protein from base hydrolyzed of date extract by- product by the fungus Fusarium graminearum. M.Sc.Thesis, Garyounis University, Benghazi. 19: 167 – 225.

    • Shahzad M.A, Rajoka M.I., (2011). Single cell protein production from aspergillus terreus and its evaluation in broiler chick. International Journal of Bioscience, Biochemistry and Bioinformatics. 1(2).

    • Çelik B., (2019). Tek hücre proteinlerinin hayvan besleme açısından önemi ve rasyonda kullanım olanakları. Lalahan Hayvan Araştırma Enstitüsü Dergisi. 59: 113-116.

    • Cazaux G, Van Gijseghem D, Bas L., (2010). Alternatieve Eiwitbronnen Voor Menselijke Consumptie. Een Verkenning. Department Landbouw en Visseij, afdeling Monitoring en Studie, Brussel.

    • Akköz C, Arslan D, Ünver A, Özcan M.M, Yılmaz B., (2011). Chemical Composition, Total Phenolic and Mineral Contenst of Enteromorpha İntestinalis (L.) Kütz. and Cladophora Glomerata (L.) Kütz. Seaweed. Journal of Food Biochemistry. 35(2); 513-523.

    • Nale Z., (2021). Yenilikçi gıda ürünlerinin geliştirilmesinde alternatif bir kaynak: Mikroalgler. Bayburt Üniversitesi Fen Bilimleri Dergisi. 4 (1): 80-90.

    • Elmadfa I, Meyer, A.L., (2017). Animal Proteins as Important Contrıbutors to a Healthy Human Diet. Annual Review of Animal Biosciences. 5: 111-131.

    • Nakitto A.M, Muyonga J.H, Nakimbugwe D., (2015). Effects of combined traditional processing methods on the nutritional quality of beans. Food Sci. Nutr.. 3: 233–41.

    • Diet., (2010). Guidel. Advis. Comm. Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans. to the Secretary of Agriculture and the Secretary of Health and Human Services. Washington, DC: US Dep. Agric., Agric. Res. Serv.

    • Westerterp-Platenga MS, Lemmens S.G, Westerterp K.R., (2012). Dietary protein—its role in satiety, energetics, weight loss and health. Br. J. Nutr.. 108: 105–S12.

    Share This Chapter!