Release Date: 2024-01-16

Food-Borne Diseases

Release Date: 2024-01-16

Foodborne diseases are illnesses that result from the ingestion of contaminated food or beverages. These infections can be caused by various pathogens, including bacteria, virus, parasites, and toxins produced by microorganisms. Common bacterial agents include Salmonella, Escherichia coli, and Listeria among others, while common viral pathogens include Norovirus and Hepatitis A among others. Parasites like [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inFood Safety
    First Page267
    Last Page288
    DOIhttps://doi.org/10.69860/nobel.9786053358787.18
    Page Count22
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Foodborne diseases are illnesses that result from the ingestion of contaminated food or beverages. These infections can be caused by various pathogens, including bacteria, virus, parasites, and toxins produced by microorganisms. Common bacterial agents include Salmonella, Escherichia coli, and Listeria among others, while common viral pathogens include Norovirus and Hepatitis A among others. Parasites like Giardia duodenalis, Entamoeba hystolytica and Toxoplasma gondii also contribute to foodborne diseases. Symptoms of foodborne infections range from mild gastrointestinal discomfort to severe dehydration and systemic conditions.Common symptoms include nausea, vomiting, diarrhoea, abdominal pain and fever among others. In severe cases, these infections can lead to long-term health problems and even death, particularly in vulnerable populations such as infants, the elderly, pregnant women, and the immunocompromised individuals. Prevention of foodborne infections involves implementing strict hygienic practices through the food supply chain, from production and processing to preparation and consumption. This includes proper hand washing, cooking food to safe temperatures, avoiding cross contamination, and ensuring the cleanliness of the food preparation area. Public health interventions and regulations, such as food safety standards and surveillance systems, play a crucial role in minimising the risk of foodborne outbreaks. The global burden of food borne infections is significant, affecting millions of people each year as well as posing challenges to health systems and economies. The continuous research and advances in food safety technologies are essential to improving detection, prevention, and management of foodborne diseases.

    Ibrahim Isa Koire (Author)
    Istanbul Universty
    https://orcid.org/0000-0002-7057-913X
    3A PhD Candidate, Ibrahim Isa Koire completed his bachelors of science degree (Microbiology) at the International University of Africa in 2011, his masters of Public Health at Dokuz Eylul University in 2017 and currently (2024) finalising his PhD in Basic and Industrial Microbiology at Istanbul University. He is an emerging scientist whose contributions range from public health to microbiology. His work has led to various publications in journals and conferences for the fields of both Public health and Microbiology.

    • (www.un.org/waterforlifedecade/quality

    • Bari, M. L., & Yeasmin, S. (2018). Foodborne diseases and responsible agents. In Food safety and preservation (pp. 195-229). Academic Press.

    • Cortés-Sánchez, A. D. J., Salgado-Cruz, M. D. L. P., Diaz-Ramírez, M., Torres-Ochoa, E., & Espinosa- Chaurand, L. D. (2023). A Review on Food Safety: The Case of Citrobacter sp., Fish and Fish Products. Applied Sciences, 13(12), 6907.

    • Karsen, H., Ceylan, M. R., Bayındır, H., & Akdeniz, H. (2019). Foodborne botulism in Turkey, 1983 to 2017. Infectious Diseases, 51(2), 91-96.

    • Erdem, H., & Akova, M. (2012). Leading infectious diseases problems in Turkey. Clinical Microbiology and Infection, 18(11), 1056-1067.

    • Abebe, E., Gugsa, G., & Ahmed, M. (2020). Review on major food-borne zoonotic bacterial pathogens. Journal of tropical medicine, 2020.

    • www.fsis.usda.gov

    • Whitham, H. K., Sundararaman, P., Dewey-Mattia, D., Manikonda, K., Marshall, K. E., Griffin, P. M., ... & Crowe, S. J. (2021). Novel outbreak-associated food vehicles, United States. Emerging infectious diseases, 27(10), 2554.

    • Afreen, M., & BAĞDATLI, İ. (2021). Food-borne pathogens in seafood. Eurasian Journal of Agricultural Research, 5(1), 44-58.

    • Vegdahl, A. C., Baldwin, W. C., & Schaffner, D. W. (2023). Growth models for Salmonella, E. coli O157: H7 and L. monocytogenes give different predictions for pathogen growth in cut leafy greens transportation, but are consistent in identifying higher risk conditions. Food Microbiology, 115, 104338.

    • Bintsis, T., & Papademas, P. (2023). Sustainable approaches in whey cheese production: A review. Dairy, 4(2), 249-270.

    • Mancini, M. E., Beverelli, M., Donatiello, A., Didonna, A., Dattoli, L., Faleo, S., ... & Goffredo, E. (2022). Isolation and characterization of Yersinia enterocolitica from foods in Apulia and Basilicata regions (Italy) by conventional and modern methods. Plos one, 17(7), e0268706.

    • Bennett, R. W., Hait, J. M., & Tallent, S. M. (2013). Staphylococcus aureus. Guide to foodborne pathogens, 26-44.

    • Kliegman, R. M., Toth, H., Bordini, B. J., & Basel, D. (Eds.). (2022). Nelson Pediatric Symptom-Based Diagnosis E-Book. Elsevier Health Sciences.

    • Dutta, D., Kaushik, A., Kumar, D., & Bag, S. (2021). Foodborne pathogenic vibrios: antimicrobial resistance. Frontiers in Microbiology, 12, 638331.

    • Miranda, R. C., & Schaffner, D. W. (2019). Virus risk in the food supply chain. Current Opinion in Food Science, 30, 43-48.

    • Ishaq, A. R., Manzoor, M., Hussain, A., Altaf, J., Rehman, S. U., Javed, Z., ... & Noor, F. (2021). Prospect of microbial food borne diseases in Pakistan: a review. Brazilian Journal of Biology, 81(4), 940-953.

    • Bosch, A., Gkogka, E., Le Guyader, F. S., Loisy-Hamon, F., Lee, A., Van Lieshout, L., ... & Phister, T. (2018). Foodborne viruses: Detection, risk assessment, and control options in food processing. International Journal of Food Microbiology, 285, 110-128.

    • Velebit, B., Djordjevic, V., Milojevic, L., Babic, M., Grkovic, N., Jankovic, V., & Yushina, Y. (2019, September). The common foodborne viruses: A review. In IOP Conference Series: Earth and Environmental Science (Vol. 333, No. 1, p. 012110). IOP Publishing.

    • Kamar, N., Izopet, J., Pavio, N., Aggarwal, R., Labrique, A., Wedemeyer, H., & Dalton, H. R. (2017). Hepatitis E virus infection. Nature Reviews Disease Primers, 3(1), 1-16.

    • O’Shea, H., Blacklaws, B. A., Collins, P. J., McKillen, J., & Fitzgerald, R. (2019). Viruses associated with foodborne infections. Reference Module in Life Sciences.

    • Koopmans, M., von Bonsdorff, C. H., Vinjé, J., de Medici, D., & Monroe, S. (2002). Foodborne viruses. FEMS microbiology reviews, 26(2), 187-205.

    • Gerace, E., Presti, V. D. M. L., & Biondo, C. (2019). Cryptosporidium infection: epidemiology, pathogenesis, and differential diagnosis. European Journal of Microbiology and Immunology, 9(4), 119-123.

    • Helmy, Y. A., & Hafez, H. M. (2022). Cryptosporidiosis: from prevention to treatment, a narrative review. Microorganisms, 10(12), 2456.

    • Sardar, S. K., Goel, G., Ghosal, A., Deshmukh, R., Bhattacharya, S., Haldar, T., ... & Ganguly, S. (2023). First case report of Cyclosporiasis from eastern India: Incidence of Cyclospora cayetanensis in a patient with unusual diarrheal symptoms. The Journal of Infection in Developing Countries, 17(07), 1037- 1040.

    • de Noya, B. A., González, O. N., & Robertson, L. J. (2015). Trypanosoma cruzias a Foodborne Pathogen.

    • Robertson, L. J., Havelaar, A. H., Keddy, K. H., Devleesschauwer, B., Sripa, B., & Torgerson, P. R. (2024). The importance of estimating the burden of disease from foodborne transmission of Trypanosoma cruzi. PLOS Neglected Tropical Diseases, 18(2), e0011898.

    • Ahmed, A., Ijaz, M., Ayyub, R. M., Ghaffar, A., Ghauri, H. N., Aziz, M. U., ... & Javed, M. U. (2020). Balantidium coli in domestic animals: An emerging protozoan pathogen of zoonotic significance. Acta tropica, 203, 105298.

    • Berhe, B., Bugssa, G., Bayisa, S., & Alemu, M. (2018). Foodborne intestinal protozoan infection and associated factors among patients with watery diarrhea in Northern Ethiopia; a cross-sectional study. Journal of Health, population and Nutrition, 37, 1-7.

    • Saraçoğlu, G. V., Kaya, A. D., & Aydın, M. (2016). Gıda çalışanlarında mikrobiyolojik tetkikleri düzenleyen mevzuatın incelenmesi. Medical Journal of Suleyman Demirel University, 23(2).

    • Jerlström-Hultqvist, J., Ankarklev, J., & Svärd, S. G. (2010). Is human giardiasis caused by two different Giardia species?. Gut microbes, 1(6), 379-382.

    • Tawana, M., Onyiche, T., Ramatla, T., & Thekisoe, O. (2023). A “One Health” perspective of Africa- wide distribution and prevalence of Giardia species in humans, animals and waterbodies: A systematic review and meta-analysis. Parasitology, 1-45.

    • Wieser, S. N., Giuliano, S. M., Reategui Ordoñez, J., Barriga Marcapura, X., Olivera, L. V., Chavez Fumagalli, M. A., ... & Florin-Christensen, M. (2024). Sarcocystis spp. of New and Old World Camelids: Ancient Origin, Present Challenges. Pathogens, 13(3), 196.

    • Van Den Broucke, S., Dorny, P., Van Esbroeck, M., & Bottieau, E. (2023). Microscopic detection of intestinal Sarcocystis infection diagnosed in international travelers at the Institute of Tropical Medicine, Antwerp, Belgium, from 2001 to 2020. The American Journal of Tropical Medicine and Hygiene, 109(2), 327.

    • Malone, C. J., Oksanen, A., Mukaratirwa, S., Sharma, R., & Jenkins, E. (2024). From wildlife to humans: The global distribution of Trichinella species and genotypes in wildlife and wildlife-associated human trichinellosis. International Journal for Parasitology: Parasites and Wildlife, 100934.

    • Borhani, M., Fathi, S., Harandi, M. F., Simsek, S., Ahmed, H., Wu, X., & Liu, M. (2023). Trichinella infections in animals and humans of Iran and Turkey. Frontiers in Medicine, 10, 1088507.

    • Fan, C. K., Barčák, D., Scholz, T., Sonko, P., Orosová, M., Su, K. E., ... & Oros, M. (2023). Human diphyllobothriosis in Taiwan: A review of cases and molecular evidence of Dibothriocephalus nihonkaiensis. Food and Waterborne Parasitology, e00213.

    • Saichua, P., Nithikathkul, C., & Kaewpitoon, N. (2008). Human intestinal capillariasis in Thailand. World Journal of Gastroenterology: WJG, 14(4), 506.

    • Tak, V. (2022). Capillariasis. In Textbook of Parasitic Zoonoses (pp. 437-446). Singapore: Springer Nature Singapore.

    • . Lalor, R., Cwiklinski, K., Calvani, N. E. D., Dorey, A., Hamon, S., Corrales, J. L., ... & De Marco Verissimo, C. (2021). Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola gigantica that cause the zoonosis Fasciolosis. Virulence, 12(1), 2839-2867.

    • Charoensuk, L., Chedtabud, K., Chaipibool, S., Laothong, U., Suwannatrai, A. T., Pinlaor, S., & Prakobwong, S. (2024). Community engagement for effective control of opisthorchiasis: A three-year mixed-methods study in rural Thailand.

    • Prasopdee, S., Rojthongpond, T., Chitkoolsamphan, Y., Pholhelm, M., Yusuk, S., Pattaraarchachai, J., ... & Thitapakorn, V. (2023). Update on the risk factors for opisthorchiasis and cholangiocarcinoma in Thailand. Parasites, Hosts and Diseases, 61(4), 463.

    • Bibik, O., Abdelhamid, M., & Sameeh, S. (2023). Opisthorchiasis in the Russian Federation: An urgent public health problem. Turkish Bulletin of Hygiene & Experimental Biology/Türk Hijyen ve Deneysel Biyoloji, 80(2).

    • Shah, P., Sah, R., Pradhan, S., Bhandari, P., Baral, R., Khanal, B., ... & Bhattarai, N. R. (2023). Pulmonary paragonimiasis: A case series. JNMA: Journal of the Nepal Medical Association, 61(259), 290.

    • Kang, S. A., Patel, P. K., Patil, S., Bran-Acevedo, A., Layfield, L., Wiesemann, S., & Roland, W. (2023). A case of spontaneous pneumothorax due to paragonimiasis in North America with literature review. IDCases, 32, e01742.

    • Gemechu, T., & Aliyo, A. (2024). Enteric Bacterial Infections, Antimicrobial Susceptibility Pattern, Intestinal Parasites, and Associated Factors Among Food Handlers in Yabelo Town, Borena Zone, Southern Ethiopia. Microbiology Insights, 17, 11786361231221717.

    • Ng-Nguyen, D., Stevenson, M. A., & Traub, R. J. (2017). A systematic review of taeniasis, cysticercosis and trichinellosis in Vietnam. Parasites & vectors, 10, 1-15.

    • Gabriël, S., Dorny, P., Saelens, G., & Dermauw, V. (2022). Foodborne parasites and their complex life cycles challenging food safety in different food chains. Foods, 12(1), 142.

    • . Food safety.https://www.who.int/news-room/fact-sheets/detail/food-safety (Date of access: 29.04.24)

    • Food-borne Illnesses Cost US$ 110 Billion Per Year in Low- and Middle-Income Countries.https:// www.worldbank.org/en/news/press-release/2018/10/23/food-borne-illnesses-cost-us-110-billionper- year-in-low-and-middle-income-countries#:~:text=WASHINGTON%2C%20DC%2C%20October% 2023%2C,and%20medical%20expenses%20each%20year (Date of access: 29.04.24)

    • Wandolo, M. A., Ndiritu, D., Khayiya, R., & Mugendi, B. J. (2018). Barriers to the Implementation of Food Safety and Hygiene Principles (HACCP) in TVET and University Hospitality Schools in Kenya

    • Speijers, G. J., & Speijers-Lafferty, M. H. (2023). Naturally Occurring Contaminants and Inherent Toxicants of Plant Origin. In Food Safety Management (pp. 37-64). Academic Press.

    • Sapeika, N. (1974). The toxicity of foods of natural origin. Transactions of the Royal Society of South Africa, 41(1), 1-17.

    • Gahamanyi, N., Mboera, L. E., Matee, M. I., Mutangana, D., & Komba, E. V. (2020). Prevalence, risk factors, and antimicrobial resistance profiles of thermophilic Campylobacter species in humans and animals in sub-saharan Africa: A systematic review. International Journal of Microbiology, 2020.

    Share This Chapter!