Antioxidant Activity and Phytochemical Analysis, and Anti-Alzheimer’s Disease Potential of Several Turkish Plants Assessed in Vitro (2015-Present
Abdullah Istek (Author), Avni Yildizbas (Author), Nastaran Sadeghian (Author)
Release Date: 2024-06-07
Media Type
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Natural Antioxidants and in Vitro Antioxidant Assays |
First Page | 121 |
Last Page | 162 |
DOI | https://doi.org/10.69860/nobel.9786053359333.6 |
Page Count | 42 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Abdullah Istek (Author)
PhD, Prof. Dr., Bartin University
https://orcid.org/0000-0002-3357-9245
3Abdullah İstek, who graduated from Karadeniz Technical University, Faculty of Forestry, Department of Forest Industrial Engineering in 1991, works in wood-based composites, fiber and paper technology, forest products chemistry, and technology. He completed his master’s degree in the chemical components of Sweetgum oil (Storax). The author, who completed his doctorate on producing medium-density fiberboard (MDF) from wheat stalks (Triticum aestivum L.), works at Bartın University as a Professor.This research focuses on biochemical synthesizing, classifying, and analyzing secondary metabolites, including alkaloids, phenolics, glucosinolates, and terpenoids known for their therapeutic properties. The study highlights the significance of these phytochemicals in developing potential treatments for Alzheimer’s disease. Also, it reviews the potential of anti-Alzheimer’s disease in various Turkish plants through in vitro assessments. In conclusion, by reviewing phytochemicals and the medicinal properties of Turkish plants, this research contributes to the understanding and potential application of natural compounds in modern pharmacology.
Avni Yildizbas (Author)
MD, Bartin University
https://orcid.org/0000-0001-5276-1627
3The author graduated from Bozok University, Faculty of Science and Letters, Department of Biology, in 2014, which I started in 2010. In 2015, he completed his master’s degree in the biology department at the same university, with a thesis titled "The taxonomic revision of genus Bolanthus (Ser.) Rchb. (Caryophyllaceae) in Türkiye." He is doing his doctorate at Bartın University, Faculty of Forestry, in the Natural Herbal Products/Cosmetic Products program.
Nastaran Sadeghian (Author)
PhD, Asst. Prof. Dr., Bartin University
https://orcid.org/0000-0002-2913-4614
3First Master’s Degree:
Ardabil Islamic Azad University, Faculty of Arts and Sciences, inorganic chemistry (2009-2012). Iranian.
Advisor: Dr. Majid Masteri-farahani. Professor (Associate) Kharazmi University, Faculty of Chemistry. Tehran, Iran Thesis title: Immobilization of MoO2(acac)2 complex on the surface of magnetite nanoparticles and characterization of resulting material Second Master: Atatürk University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics (2014-2016).
Advisor: Prof. Dr. Ozkan AKSAKAL. Department of Molecular Biology. Ataturk University.
Thesis title: Changes in the expression of some genes in lettuce seedlings, determination of the effects of UV-B and humic acid on biochemical and physiological parameters.
Doctorate:
Atatürk University, Institute of Science, Department of Chemistry (2012-2017). Türkiye.
Advisor: Prof. Dr. Hasan Özdemir. Faculty of Science, Department of Chemistry, Atatürk University.
Thesis title: Purification and characterization of peroxidase (POD) enzyme from sweet radish (Raphanus sativus), Japanese radish (R. sativus L. var. longipinnatus) and cauliflower (Brassica oleracea) by affinity chromatography technique Her Works Starting from his doctoral education, Nastaran Sadeghian has focused on enzymes and antioxidants, examining the antioxidant capacities of different extracts isolated from various herbal sources in vitro and determining their active components. In this context, he has researched the antioxidant and radical scavenging capacities of plants unique to Anatolia and has conducted these studies. She effectively used the knowledge and experience She gained in the fields of inorganic chemistry, molecular biology and genetics in his two master’s degrees in his subsequent studies, and also studied biological activities such as purification and characterization of some metabolic enzymes from different radishes and enzyme inhibition in her doctoral studies. She has experience in gene analysis, DNA isolation, RNA isolation, PCR, ELisa and other methods. In his first master’s degree, she also worked on nanoparticles for inorganic chemistry. She has experience in the enzymes he works with: peroxidase, lactoperoxidase, laccase, carbonic anhydrase, cholinesterases, and other metabolic enzymes.
Özlüsoylu, Ş., Yıldızbaş, A., & Kılıç-Pekgözlü, A. (2023). Fenolik Bileşikler ve Biyolojik Aktivite Özellikleri. In Özrenk K. (Ed.), Ziraat ve Orman ve Su Ürünleri Alanında Uluslararası Araştırma ve Değerlendirmeler (1st ed., pp. 155-170). Serüven Yayınevi.
Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol, 2(7), 377-392.
Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (secondary metabolites). Biochemistry and molecular biology of plants, 24, 1250-1319.
Hanson, J. R. (2003). Natural products: the secondary metabolites (Vol. 17). Royal Society of Chemistry.
Demain, A. L., & Fang, A. (2000). The natural functions of secondary metabolites. History of modern biotechnology I, 1-39.
Demir, T., & Akpınar, Ö. (2020). Bitkilerde bulunan fitokimyasalların biyolojik aktiviteleri. Turkish Journal of Agriculture-Food Science and Technology, 8(8), 1734-1746.
Ülgen, C., & Tavşanoğlu, Ç. (2024). A taxonomic snapshot of belowground organs in plants of Anatolian steppes. Folia Geobotanica, 1-13.
Máthé, Á., & Turgut, K. (2023). Introduction to Medicinal and Aromatic Plants in Türkiye. In Medicinal and Aromatic Plants of Turkey (pp. 1-30). Cham: Springer International Publishing.
Genç, M., Biyikli, M., & Baydar, H. (2023). Natural Dye Plants in Turkey. In Medicinal and Aromatic Plants of Turkey (pp. 57-71). Cham: Springer International Publishing.
İzol, E. (2023). “Phytochemicals in Honey and Health Effects”, In Honeybees, Plants and Health, ed. Koçyiğit M., İzol E., Haspolat Y.K., Orient Publications, 85-96.
Yapıcı, İ., İzol, E. (2023). “Phytochemicals and their Bioavailability”, In Medicinal, Aromatıc Plants and Phytochemicals, ed. İzol E., Yılmaz M. A., Haspolat Y. K., Orient Publications, 43-60.
İzol, E., Yapıcı, İ., Tarhan, A. (2023). “Medicinal Aromatic Plants and Phytochemicals from the Perspective of Biochemistry”, In Medicinal, Aromatıc Plants and Phytochemicals, ed. İzol E., Yılmaz M. A., Haspolat Y. K., Orient Publications, 1-10.
Verpoorte, R., & Alfermann, A. W. (Eds.). (2000). Metabolic engineering of plant secondary metabolism. Springer Science & Business Media.
Ahmed, E., Arshad, M., Khan, M. Z., Amjad, M. S., Sadaf, H. M., Riaz, I., ... & Ahmad, N. (2017). Secondary metabolites and their multidimensional prospective in plant life. J. Pharmacogn. Phytochem, 6(2), 205-214.
Roopan, S. M., & Madhumitha, G. (Eds.). (2018). Bioorganic phase in natural food: An overview.
Bruce, S. O. (2022). Secondary metabolites from natural products. Secondary Metabolites: Trends and Reviews, 51.
Zhan, X., Chen, Z., Chen, R., & Shen, C. (2022). Environmental and genetic factors involved in plant protection-associated secondary metabolite biosynthesis pathways. Frontiers in Plant Science, 13, 877304.
Alvarez, M. A., & Alvarez, M. A. (2014). Plant secondary metabolism. Plant Biotechnology for Health: From Secondary Metabolites to Molecular Farming, 15-31.
Stewart A.J & Stewart R.F. (2008). Phenols. Encyclopedia of Ecology, Jorgensen, S. E., & Fath, B. D. (Eds.). Academic press, 2682–2689.
Jan, R., Asaf, S., Numan, M., Lubna, & Kim, K. M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 968.
Vermerris, W., & Nicholson, R. (2007). Phenolic compound biochemistry. Springer Science & Business Media.
Tzin, V., & Galili, G. (2010). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular plant, 3(6), 956-972.
Tohge, T., Watanabe, M., Hoefgen, R., & Fernie, A. R. (2013). Shikimate and phenylalanine biosynthesis in the green lineage. Frontiers in plant science, 4, 62.
Zuiter, A. S. (2014). Proanthocyanidin: Chemistry and biology: From phenolic compounds to proanthocyanidins.
Nwafor, F. I., & Orabueze, I. C. (2018). Role of phytochemistry in plant classification: Phytochemotaxonomy. In Phytochemistry (pp. 197-222). Apple Academic Press.
Izol, E. (2016). Determination of Heavy Metals and Seconder Metabolites of some Allium (Wild Garlic) Species by ICP-MS and LC-MS/ MS Investigation of Their Biological Activities. Dicle Üniversitesi, Fen Bil. Ens., Kimya ABD, Yüksek Lisans Tezi.
Talapatra, S. K., Talapatra, B., Talapatra, S. K., & Talapatra, B. (2015). Introduction: Enzymes. Cofactors/Coenzymes. Primary and Secondary Metabolites. Natural Products and their Functions. Plant Chemical Ecology. Biosynthesis. Metabolic Pathways. Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine, 1-22.
Dey, P., Kundu, A., Kumar, A., Gupta, M., Lee, B. M., Bhakta, T., ... & Kim, H. S. (2020). Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In Recent advances in natural products analysis (pp. 505-567). Elsevier.
Setyorini, D., & Antarlina, S. S. (2022). Secondary metabolites in sorghum and its characteristics. Food Science and Technology, 42, e49822.
Karakcı, D. (2021). Glukosinolatlardan hidrolize edilen sulforafanın potansiyel etkileri ve Nrf2-Keap-1 sinyal yolağı ile ilişkisi. Journal of Anatolian Environmental and Animal Sciences, 6(3), 352-356.
Çömlekçioğlu, N., Kocabaş, Y.Z., & Karaman, Ş. (2014, May 8-10). Glukozinolatlar ve Önemi [Poster presentation]. 3rd International Non-wood Forest Products Symposium, Kahramanmaraş, Türkiye.
Sarıkamış, G. (2011). Brokkolinin (Brassica oleracea L. var. italica) İnsan sağlığına yararları. Türk Bilimsel Derlemeler Dergisi, (2), 9-82.
Sánchez-Pujante, P. J., Borja-Martínez, M., Pedreño, M. Á., & Almagro, L. (2017). Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures. Planta, 246, 19-32.
Zhang, J., Zhang, R., Zhan, Z., Li, X., Zhou, F., Xing, A., ... & An, L. (2017). Beneficial effects of sulforaphane treatment in Alzheimer's disease may be mediated through reduced HDAC1/3 and increased P75NTR expression. Frontiers in aging neuroscience, 9, 121.
Kossel, A. (1891). Ueber die chemische Zusammensetzung der Zelle. Du Bois-Reymond's Archiv/Arch Anat Physiol Physiol Abt, 278, 181-186.
Bhatla, S. C., & Lal, M. A. (2018). Plant physiology, development and metabolism. Springer.
Hadacek, F. (2002). Secondary metabolites as plant traits: current assessment and future perspectives. Critical Reviews in Plant Sciences, 21(4), 273-322.
Bonner, J., & Galston, A. W. (1952). Principles of plant physiology (Vol. 73, No. 5, p. 417). LWW.
Zähner, H. (1979). What are secondary metabolites?. Folia microbiologica, 24(5), 435-443.
Zenk, M. H. (1967). Biochemie und physiologie sekundaerer pflanzenstoffe. Ber. Dtsch. Bot. Ges, 80, 573-591.
Walker, J. B. (1974). Biosynthesis of the monoguanidinated inositol moiety of bluensomycin, a possible evolutionary precursor of streptomycin. Journal of Biological Chemistry, 249(8), 2397-2404.
Demain, A. L. (1976). Genetic regulation of fermentation organisms: fermentation, regulation, antibiotics.
Demain, A. L. (1996). Fungal secondary metabolism: regulation and functions.
Brattsten, L. B. (1980). Biochemical defense mechanisms in herbivores against plant allelochemicals. Herbivores. Their interaction with secondary plant metabolites, 199-270.
Jarvis, B. B. (2000). The role of natural products in evolution. Recent Advances in Phytochemistry, 34, 1-24.
Klaassen, C. D. (Ed.). (2001). Casarett and Doull's toxicology: the basic science of poisons (Vol. 1236, p. 189). New York: McGraw-Hill.
Petrovska, B. B. (2012). Historical review of medicinal plants' usage. Pharmacognosy reviews, 6(11), 1.
Serturner, F. W. (1805). Darstellung der reinen Mohnsaure (Opiumsaure) nebst einer chemischen Untersuchung des Opiums mit vorzuglicher Hinsicht auf einen darin neu entdeckten Stoff und die darin gehorigen Bemerkungen. Trommsdorffs Journal der Pharmazie, 14(1), 47-98.
Serturner, F. (1817). Uber das Morphium, eine neue salzfähige grundlage, und die mekonsäure, als hauptbestandtheile des opium. Gilbert Ann Physick, 55, 56-89.
Meissner, W. (1819). Ueber ein neues pflanzenalkali (alkaloid). Journal für Chemie und Physik, 25, 379-381.
Eich, E. (2008). Solanaceae and Convolvulaceae: Secondary metabolites: Biosynthesis, chemotaxonomy, biological and economic significance (a handbook). Springer Science & Business Media.
Ege, M., & Elmastaş, M. (2020). Antiviral etkili fitoterapötikler: tıbbi bitkiler ve fitokimyasallar. Bütünleyici ve Anadolu Tıbbı Dergisi, 1(2), 2-20.
Manousi, N., Sarakatsianos, I., & Samanidou, V. (2019). Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. In Engineering tools in the beverage industry (pp. 283-314). Woodhead Publishing.
Verep, D., Ateş, S., & Karaoğul, E. (2023). A Review of Extraction Methods for Obtaining Bioactive Compounds in Plant-Based Raw Materials. Bartın Orman Fakültesi Dergisi, 25(3), 492-513.
Stéphane, F. F. Y., Jules, B. K. J., Batiha, G. E., Ali, I., & Bruno, L. N. (2021). Extraction of bioactive compounds from medicinal plants and herbs. Nat Med Plants.
Sinha, D., Mukherjee, S., & Chowdhury, S. (2022). Methods of Extraction of Phytochemicals. In Isolation, Characterization, and Therapeutic Applications of Natural Bioactive Compounds (pp. 250-279). IGI Global.
Büyüktuncel, E. (2012). Gelişmiş ekstraksiyon teknikleri I. Hacettepe University Journal of the Faculty of Pharmacy, (2), 209-242.
Bagade, S. B., & Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Critical reviews in analytical chemistry, 51(2), 138-149.
Taşkıran, Z. G., Dündar, A., & Yıldız, H. (2023). Bitkisel Materyallerdeki Biyoaktif Bileşenlerin Ekstraksiyonunda Kullanılan Konvansiyonel ve Yeni Nesil Ekstraksiyon Yöntemleri. Gıda Bilimi ve Mühendisliği Araştırmaları, 2(2), 50-58.
Cavuldak, Ö. A., Vural, N., & Anlı, R. E. (2016). BİTKİ KAYNAKLI FENOLİK BİLEŞİKLERİN ULTRASONİK DALGA DESTEKLİ EKSTRAKSİYONU. Gıda, 41(1), 53-61.
Kılıç, A. (2008). Uçucu yağ elde etme yöntemleri. Bartın Orman Fakültesi Dergisi, 10(13), 37-45.
Bursal, E., Yılmaz, M. A., Izol, E., Türkan, F., Atalar, M. N., Murahari, M., ... &Ahmad, M. (2021). Enzyme inhibitory function and phytochemical profile of Inula discoidea using in vitro and in silico methods. Biophysical Chemistry, 277, 106629.
İzol, E. (2023). Bazı Arı Ürünlerinin (Bal, Polen, Propolis, Arı Sütü ve Arı Ekmeği) LC-MS/MS ile Sekonder Metabolitlerinin ve Biyolojik Aktivitelerinin Belirlenmesi. Doktora tezi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
Yılmaz, M.A., Cakir, O., İzol, E., Tarhan, A., Behçet, L., Zengin, G. (2023). Detailed Phytochemical Evaluation of a Locally Endemic Species (Campanula baskilensis) by LC-MS/MS and its In-Depth Antioxidant and Enzyme Inhibitory Activities. Chemistry&Biodiversity, 20(12), e202301182.
De Silva, G. O., Abeysundara, A. T., & Aponso, M. M. W. (2017). Extraction methods, qualitative and quantitative techniques for screening of phytochemicals from plants. American Journal of Essential Oils and Natural Products, 5(2), 29-32.
Karageçili, H., İzol, E., Kireçci, E. & Gülçin, İ. (2023). Antioxidant, antidiabetic, antiglaucoma, and anticholinergic effects of Tayfi grape (Vitis vinifera): A phytochemical screening by LC-MS/MS analysis. Open Chemistry, 21(1), 20230120.
Inci, H., Izol, E., Yilmaz, M. A., Ilkaya, M., Bingöl, Z., & Gülçin, I. (2023). Comprehensive Phytochemical Content by LC/MS/MS and Anticholinergic, Antiglaucoma, Antiepilepsy, and Antioxidant Activity of Apilarnil (Drone Larvae). Chemistry & Biodiversity, 20(10), e202300654.
Karagecili, H., Izol, E., Kirecci, E., Gulcin, I. (2023). Determination of Antioxidant, Anti-Alzheimer, Antidiabetic, Antiglaucoma and Antimicrobial Effects of Zivzik Pomegranate (Punicagranatum) —A Chemical Profiling by LC-MS/MS). Life, 13, 735.
Tougu, V. (2001). Acetylcholinesterase: mechanism of catalysis and inhibition. Current Medicinal Chemistry-Central Nervous System Agents, 1(2), 155-170.
Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: from 3D structure to function. Chemico-biological interactions, 187(1-3), 10-22.
Gülçin, İ., Scozzafava, A., Supuran, C. T., Koksal, Z., Turkan, F., Çetinkaya, S., ... & Alwasel, S. H. (2016). Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. Journal of enzyme inhibition and medicinal chemistry, 31(6), 1698-1702.
Çokuğraş, A. N. (2003). Butyrylcholinesterase: structure and physiological importance. Turk J Biochem, 28(2), 54-61.
Adewusi, E. A., Moodley, N., & Steenkamp, V. (2010). Medicinal plants with cholinesterase inhibitory activity: a review. African Journal of Biotechnology, 9(49), 8257-8276.
Eruygur, N., Ayaz, F., Bağcı, Y., Güler, E., & Çağıl, E. M. (2022). Phenolic composition, in-vitro antioxidant and enzyme inhibition activities of Cardaria draba different parts. Avrupa Bilim ve Teknoloji Dergisi, (35), 424-431.
Kuş, Ç., Duru, M. E., & Küçükaydın, S. (2017). Anticholinesterase activities from aqueous extract of different plant parts of Erica manipuliflora. International Journal of Secondary Metabolite, 4(3, Special Issue 2), 372-375.
Ceylan, B., Dayan, S., & DUĞAN, E. (2023). Investigation of Anti-Alzheimer and Anti-Diabetic Activity of Callus Culture of Bellevalia edirnensis ÖZHATAY & MATHEW: An Endemic Plant From Turkey. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 9(2), 281-288.
Deveci, E., Tel-Çayan, G., Yıldırım, H., & Duru, M. E. (2017). Chemical composition, antioxidant, anticholinesterase and anti-urease activities of Sideritis pisidica Boiss. & Heldr. endemic to Turkey. Marmara Pharmaceutical Journal, 21(4), 898-905.
Deveci, E., Tel-Çayan, G., & Duru, M. E. (2018). Phenolic profile, antioxidant, anticholinesterase, and anti-tyrosinase activities of the various extracts of Ferula elaeochytris and Sideritis stricta. International journal of food properties, 21(1), 771-783.
Çarıkçı, S. (2020). Antioxidant and Anticholinesterase Properties of Sideritis perfoliata subsp. athoa (Papan. &Kokkini) Baden and Sideritis trojana Bornm. Teas from Mount Ida-Turkey and Their Phenolic Characterization by LC-MS/MS. Journal of the Turkish Chemical Society Section A: Chemistry, 7(2), 617-634.
Albayrak, G., Demir, S., Koyu, H., & Baykan, S. (2023). Anticholinesterase and antityrosinase activities of endemic Prangos heyniae H. Duman & MF Watson and its metabolites. İstanbul Journal of Pharmacy, 53(1), 51-57.
Altın, S., & Köksal, E. (2024). Glaucium Cappadocicum: Screening on Antioxidant, Antimicrobial, Anticholinesterase Inhibition in vitro. Hacettepe Journal of Biology and Chemistry, 52(1), 1-9.
Kisa, D., Kaya, Z., Imamoglu, R., Genc, N., Taslimi, P., & Taskin-Tok, T. (2022). Assessment of antimicrobial and enzymes inhibition effects of Allium kastambulense with in silico studies: Analysis of its phenolic compounds and flavonoid contents.
Sabudak, T., Öztürk, M., & Alpay, E. (2017). New bioflavonoids from Solanum nigrum L. by anticholinesterase and anti-tyrosinase activities-guided fractionation.
Pulat, E., Yıldızbaş, A., & Yaman, B. (2024). Wood Anatomical Characteristics of Felty Germander (Teucrium polium L. subsp. polium) in Two Different Habitats. Bartın Orman Fakültesi Dergisi, 26(1), 110-118.
Toplan, G. G., Göger, F., Taşkin, T., GENÇ, G. E., Civaş, A., Işcan, G., ... & BAŞER, K. H. C. (2022). Phytochemical composition and pharmacological activities of Teucrium polium L. collected from eastern Turkey. Turkish Journal of Chemistry, 46(1), 269-282.
Taslimi, P., Köksal, E., Gören, A. C., Bursal, E., Aras, A., Kılıç, Ö., ... & Gülçin, İ. (2020). Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arabian journal of chemistry, 13(3), 4528-4537.
Bursal, E., Aras, A., Kılıç, Ö., Taslimi, P., Gören, A. C., & Gülçin, İ. (2019). Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α‐amylase, butyrylcholinesterase, and α‐glycosidase enzymes. Journal of food biochemistry, 43(3), e12776.
Izol, E., Temel, H., Yilmaz, M. A., Yener, I., Olmez, O. T., Kaplaner, E., ... &Ertas, A. (2021). A detailed chemical and biological investigation of twelve Allium species from Eastern Anatolia withchemometric studies. Chemistry&Biodiversity, 18(1), e2000560.
Marchiosi, R., dos Santos, W. D., Constantin, R. P., de Lima, R. B., Soares, A. R., Finger-Teixeira, A., ... & Ferrarese-Filho, O. (2020). Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochemistry Reviews, 19, 865-906.
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |