Release Date: 2024-06-10

Cocos Nucifera L.

Mehdi Eini (Author)

Release Date: 2024-06-10

Coconut palm (Cocos nucifera) (Arecaceae) is ubiquitous in the tropics. In line with its intended use, this plant is given names such as "tree of heaven" and "tree of life". Coconut haustorium, which is rich in nutrients, has a nutritional composition of approximately 66% carbohydrates. Approximately 66% of the composition consists of carbohydrates, of which [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inMedicinal Spices
    First Page53
    Last Page68
    DOIhttps://doi.org/10.69860/nobel.9786053359340.4
    Page Count16
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Coconut palm (Cocos nucifera) (Arecaceae) is ubiquitous in the tropics. In line with its intended use, this plant is given names such as "tree of heaven" and "tree of life". Coconut haustorium, which is rich in nutrients, has a nutritional composition of approximately 66% carbohydrates. Approximately 66% of the composition consists of carbohydrates, of which approximately 64% are soluble sugars. This substance, in addition to being rich in ingredients, contains significant amounts of dietary fiber, polyphenols and minerals. Coconut is widely used in cuisine, especially in Asia and tropical regions. The flesh of this fruit can be used fresh or dried, adding flavor and texture to dishes. Additionally, coconut oil is also used for cooking, cosmetic and medicinal purposes and is known to have antioxidant properties as well as supporting effects on skin and hair health.

    Mehdi Eini (Author)
    Istanbul Universty
    https://orcid.org/0000-0003-1174-0576
    3Mehdi Eini graduated with a Bachelor’s degree in Biochemistry from Islamic Azad University, Iran, in 2015. He obtained my Master’s degree in Biochemistry from Islamic Azad University, Iran, in 2018, with a thesis on "Analysis and Proteomics of Wound Healing Mechanisms in Mice with Omega-3 Acid Complex Supplementation.

    • Liu, H., Qiu, N., Ding, H., & Yao, R. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food research international, 2008; 363-370.

    • Bouyanfif, A. Effects of fatty acid supplementation on gene expression, lifespan, and biochemical changes in wild type and mutant C. elegans strains (Doctoral dissertation) 2019.

    • Hasler, C. M. .Functional foods: their role in disease prevention and health promotion. 1998.

    • Chon, S. U., Heo, B. G., Park, Y. S., Kim, D. K., & Gorinstein, S. Total phenolics level, antioxidant activities and cytotoxicity of young sprouts of some traditional Korean salad plants. Plant Foods for Human Nutrition. 2009; 25-31.

    • Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. A. Spices as functional foods. Critical reviews in food science and nutrition. 2010; 13-28.

    • Fernández-López, J., Aleson-Carbonell, L., Sendra, E., Sayas-Barberá, E., & Angel Pérez-Alvarez, J. Dietary polyphenols as functional ingredients: relevance in citrus fruits. Tree Forestry Sci Biotech, 2(Special Issue 1) . 2009; 120-126.

    • Beckman, K. B., & Ames, B. N. The free radical theory of aging matures. Physiological reviews. 1998.

    • Singh, R. P., Padmavathi, B., & Rao, A. R. Modulatory influence of Adhatoda vesica (Justicia adhatoda) leaf extract on the enzymes of xenobiotic metabolism, antioxidant status and lipid peroxidation in mice. Molecular and cellular biochemistry. 2000; 99-109.

    • Renjith, R. S., & Rajamohan, T. Protective and curative effects of Cocos nucifera inflorescence on alloxan-induced pancreatic cytotoxicity in rats. Indian journal of pharmacology. 2012; 555-559.

    • Renjith, R. S., & Rajamohan, T. Young inflorescence of Cocos nucifera contributes to improvement of glucose homeostasis and antioxidant status in diabetic rats. International Journal of Diabetes in Developing Countries. 2012; 193-198.

    • Balasubramaniam, K., Atukorala, T. M. S., Wijesundera, S., Hoover, A. A., & De Silva, M. A. T. Biochemical changes during germination of the coconut (Cocos nucifera). Annals of Botany. 1973; 439-445.

    • Manivannan, A., Bhardwaj, R., Padmanabhan, S., Suneja, P., Hebbar, K. B., & Kanade, S. R. Biochemical and nutritional characterization of coconut (Cocos nucifera L.) haustorium. Food Chemistry.2018; 153-159.

    • DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. Colorimetric method for determination of sugars and related substances. Analytical chemistry. 1956; 350-356.

    • Somogyi, M. Notes on sugar determination. Journal of biological chemistry.1952; 195, 19-23.

    • Association of Official Analytical Chemists, & Association of Official Agricultural Chemists (US). Official methods of analysis of the Association of Official Analytical Chemists (Vol. 2). Association of Official Analytical Chemists. 1920.

    • Kitson, R. E., & Mellon, M. G. Colorimetric determination of phosphorus as molybdivanadophosphoric acid. Industrial & Engineering Chemistry Analytical Edition. 1944; 379-383.

    • Vl, S. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 1999; 152-178.

    • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152-178). Academic press. 1999.

    • Benzie, I. F., & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry. 1996; 70-76.

    • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of agricultural and food chemistry. 2004; 7970-7981.

    • Arnao, M. B., Cano, A., & Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food chemistry. 2001; 239-244.

    • Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology. 1995; 25-30.

    • Srivastava, Y., Semwal, A. D., & Majumdar, A. (). Quantitative and qualitative analysis of bioactive components present in virgin coconut oil. Cogent Food & Agriculture. 2016; 1164929.

    • Marina, A. M., Che Man, Y. B., Nazimah, S. A. H., & Amin, I. (). Antioxidant capacity and phenolic acids of virgin coconut oil. International journal of food sciences and nutrition, 60(sup2). 2009; 114-123.

    • Gao, R., Yuan, Z., Zhao, Z., & Gao, X. Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity. Bioelectrochemistry and Bioenergetics. 1998; 41-45.

    • USDA, National Nutrient Database for Standard Reference Release 28. URL https://ndb.nal.usda.gov/ndb/foods/show/3656?fg=&manu=&lfacet=&format=& count=&max=35&offset=&sort=&qlookup=coconut. Accessed 02-07-2016.

    • Consultation, J. F. W. E. Protein quality evaluation. Food and Agriculture Organization of the United Nations: Rome, Italy. 1991.

    • Balasubramaniam, K., Atukorala, T. M. S., Wijesundera, S., Hoover, A. A., & De Silva, M. A. T. Biochemical changes during germination of the coconut (Cocos nucifera). Annals of Botany.1973;439-445.

    • Sugimura, Y., & Murakami, T. Structure and function of the haustorium in germinating coconut palm seed. Japan Agricultural Research Quarterly. 1990; 1-14.

    • Vesa, T. H., Marteau, P., & Korpela, R.). Lactose intolerance. Journal of the American College of Nutrition. 2000; 165S-175S.

    • Allowances, R. D. Nutrient requirements and recommended dietary allowances for Indians. ICMR-National Institute of Nutrition: Hyderabad, India. 2009.

    • Lee, J., Koo, N., & Min, D. B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive reviews in food science and food safety. 2004; 21-33.

    • Cano, A., Hernández‐Ruíz, J., García‐Cánovas, F., Acosta, M., & Arnao, M. B. An end‐point method for estimation of the total antioxidant activity in plant material. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques.1998; 196-202.

    • Kanner, J., Gorelik, S., Roman, S., & Kohen, R. Protection by polyphenols of postprandial human plasma and low-density lipoprotein modification: the stomach as a bioreactor. Journal of Agricultural and Food Chemistry. 2012; 8790-8796.

    • Lapidot, T., Granit, R., & Kanner, J. Lipid hydroperoxidase activity of myoglobin and phenolic antioxidants in simulated gastric fluid. Journal of Agricultural and Food Chemistry. 2005; 3391-3396.

    • Chikku, A. M., & Rajamohan, T. Dietary coconut sprout beneficially modulates cardiac damage induced by isoproterenol in rats. ||| Bangladesh Journal of Pharmacology|||. 2012; 258-265.

    • Tapal, A., Vegarud, G. E., Sreedhara, A., Hegde, P., Inamdar, S., & Tiku, P. K. In vitro human gastro-intestinal enzyme digestibility of globulin isolate from oil palm (Elaeis guineensis var. tenera) kernel meal and the bioactivity of the digest. RSC advances. 2016; 20219-20229.

    • Zheng, Y., Li, Y., & Zhang, Y. Purification and identification of antioxidative peptides of palm kernel expeller glutelin-1 hydrolysates. RSC advances. 2017; 54196-54202.

    • Gan, R. Y., Li, H. B., Gunaratne, A., Sui, Z. Q., & Corke, H. (). Effects of fermented edible seeds and their products on human health: Bioactive components and bioactivities. Comprehensive Reviews in Food Science and Food Safety. 2017; 489-531.

    • Yu, F. R., Lian, X. Z., Guo, H. Y., McGuire, P. M., Li, R. D., Wang, R., & Yu, F. H. Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. J Pharm Pharm Sci. 2005; 528-35.

    • Intahphuak, S., Khonsung, P., & Panthong, A. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil. Pharmaceutical. 2010; 151-157.

    • Chandrasekaran, M., Senthilkumar, A., & Venkatesalu, V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. European Review for Medical & Pharmacological Sciences. 2011.

    • Mohan, V. R., Jegadeswari, P., Nishanthini, A., & Muthukumarasamy, S. GC-MS analysis of bioactive components of Aristolochia krysagathra (Aristolochiaceae). Journal of Current Chemical and Pharmaceu tical Sciences. 2012; 226-232.

    • Bhaskar, A., & Upgade, A. Characterization and medicinal importance of phytoconstituents of Carica papaya from down south Indian region using gas chromatography and mass spectroscopy. Asian journal of pharmaceutical and clinical research. 2013; 101-106.

    • Parthipan, B., Suky, M. G. T., & Mohan, V. R. GC-MS analysis of phytocomponents in Pleiospermium alatum (Wall. ex Wight & Arn.) Swingle,(Rutaceae). Journal of Pharmacognosy and Phytochemistry. 2015; 216-222.

    • Harada, H., Yamashita, U., Kurihara, H., Fukushi, E., Kawabata, J., & Kamei, Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer research. 2002; 2587-2590.

    • Rani, P. M., Kannan, P. S., & Kumaravel, S. GC-MS analysis of Lantana camara L. leaves. JPRD. 2011; 63-6.

    • Ravi, L., & Krishnan, K. Research article cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J. Cell Biol. 2017; 20-27.

    • Saputera, S., Mangunwidjaja, D., Raharja, S., Kardono, L. B. S., & Iswantini, D. Gas chromatography and gas chromatography-mass spectrometry analysis of Indonesian Croton tiglium seeds. 2006.

    • Kramer, J. K., Parodi, P. W., Jensen, R. G., Mossoba, M. M., Yurawecz, M. P., & Adlof, R. O. Rumenic acid: a proposed common name for the major conjugated linoleic acid isomer found in natural products. Lipids. 1998; 835-835

    • O'Shea, M., Bassaganya-Riera, J., & Mohede, I. C. Immunomodulatory properties of conjugated linoleic acid. The American journal of clinical nutrition. 2004; 1199S-1206S.

    • Zhang, F. F., Gan, L. L., & Zhou, C. H. Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorganic & Medicinal Chemistry Letters. 2010; 1881-1884.

    • Bandgar, B. P., Adsul, L. K., Chavan, H. V., Jalde, S. S., Shringare, S. N., Shaikh, R., ... & Masand, V. Synthesis, biological evaluation, and docking studies of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents. Bioorganic & medicinal chemistry letters. 2012; 5839-5844.

    • Biamonte, M. A., Wanner, J., & Le Roch, K. G. Recent advances in malaria drug discovery. Bioorganic & medicinal chemistry letters. 2013; 2829-2843.

    Share This Chapter!