Release Date: 2024-06-10

Clinical Aspects and Treatment of Parkinson Disease: a Biochemical Perspective

Adnan Ayna (Author)

Release Date: 2024-06-10

Parkinson disease (PD), among one of the most prevalent neurodegenerative illness, affecting around 2-3% of people over the age of 65. PD is characterized by intra-cellular aggregates of α-synuclein (syn) and neuron cell loss in the brain region of substantia nigra (SN), which results in deficiency in dopamine levels. Several other types of cell in [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inNeurological Diseases and Treatments in Terms of Biochemistry
    First Page141
    Last Page161
    DOIhttps://doi.org/10.69860/nobel.9786053359357.9
    Page Count21
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Parkinson disease (PD), among one of the most prevalent neurodegenerative illness, affecting around 2-3% of people over the age of 65. PD is characterized by intra-cellular aggregates of α-synuclein (syn) and neuron cell loss in the brain region of substantia nigra (SN), which results in deficiency in dopamine levels. Several other types of cell in the peripheral and central autonomic nerve are also involved, most probably from the beginning of the disease. PD is associated with numerous non-motor indicators that donate to overall infirmity, despite the fact a medical diagnosis of the ailment governed by the existence of bradykinesia and some of the other essential motor features. Several paths and machineries, containing proteostasis of syn, mitochondrial function, oxidative injuries, calcium homeostasis, axonal transport, and neuro-inflammation, are participated in the principal molecular pathogenesis. The mainstay of PD treatment is the pharmacological replacement of striatal dopamine. Non-dopaminergic methods are also utilized to treat non-motor and motor symptoms, and deep brain stimulation is utilized for patients who experience unmanageable motor complications related to L-DOPA. For the pharmacological treatment of PD, levodopa, dopamine agonists, monoamine oxidase inhibitors, and catechol-O-methyltransferase inhibitors are commonly used.

    Adnan Ayna (Author)
    Associate Professor, Bingöl University
    https://orcid.org/0000-0001-6801-6242
    3Dr. Adnan Ayna was born in 1985 at Diyarbakır. He graduated from Ege University, Faculty of Science, Biochemistry Department in 2009. In 2009, he was entitled to study abroad with the YLSY scholarship organized by the Ministry of National Education. In this context, in 2010, he started the Advanced Biochemistry and Biocatalysis Master’s program organized by the University of Exeter. In 2011, he was entitled to receive a master’s degree with his thesis under the supervision of Prof. Dr. Jennifer Littlechid. In 2012, he was awarded to start PhD study at the University of Leicester Biochemistry PhD program and awarded the PhD title in April 2016 under supervision of Prof. Dr. Peter Moody. He started working as research assistant at Bingöl University chemistry department in 2016. He is now working as an Assoc. Prof in the same department.

    • Armstrong, M. J., & Okun, M. S. (2020). Diagnosis and treatment of Parkinson disease: a review. Jama, 323(6), 548-560.

    • Poewe, W., & Mahlknecht, P. (2020). Pharmacologic treatment of motor symptoms associated with Parkinson disease. Neurologic clinics, 38(2), 255-267.

    • Coukos, R., & Krainc, D. (2024). Key genes and convergent pathogenic mechanisms in Parkinson disease. Nature Reviews Neuroscience, 1-21.

    • Masood, N., & Jimenez-Shahed, J. (2023). Effective management of “OFF” episodes in Parkinson’s disease: emerging treatment strategies and unmet clinical needs. Neuropsychiatric Disease and Treatment, 247-266.

    • Moradi Vastegani, S., Nasrolahi, A., Ghaderi, S., Belali, R., Rashno, M., Farzaneh, M., & Khoshnam, S. E. (2023). Mitochondrial dysfunction and Parkinson’s disease: pathogenesis and therapeutic strategies. Neurochemical Research, 48(8), 2285-2308.

    • Guatteo, E., Berretta, N., Monda, V., Ledonne, A., & Mercuri, N. B. (2022). Pathophysiological features of nigral dopaminergic neurons in animal models of Parkinson’s disease. International Journal of Molecular Sciences, 23(9), 4508.

    • Leitão, A. D., Rudolffi-Soto, P., Chappard, A., Bhumkar, A., Lau, D., Hunter, D. J., ... & Sierecki, E. (2021). Selectivity of Lewy body protein interactions along the aggregation pathway of α-synuclein. Communications Biology, 4(1), 1124.

    • Kon, T., Tomiyama, M., & Wakabayashi, K. (2020). Neuropathology of Lewy body disease: clinicopathological crosstalk between typical and atypical cases. Neuropathology, 40(1), 30-39.

    • Badanjak, K., Fixemer, S., Smajić, S., Skupin, A., & Grünewald, A. (2021). The contribution of microglia to neuroinflammation in Parkinson’s disease. International Journal of Molecular Sciences, 22(9), 4676.

    • Kung, H. C., Lin, K. J., Kung, C. T., & Lin, T. K. (2021). Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines, 9(8), 918.

    • Vidović, M., & Rikalovic, M. G. (2022). Alpha-Synuclein aggregation pathway in Parkinson’s disease: current status and novel therapeutic approaches. Cells, 11(11), 1732.

    • Li, W., Fu, Y., Halliday, G. M., & Sue, C. M. (2021). PARK genes link mitochondrial dysfunction and alpha-synuclein pathology in sporadic Parkinson’s disease. Frontiers in Cell and Developmental Biology, 9, 612476.

    • Ambar Akkaoui, M., Geoffroy, P. A., Roze, E., Degos, B., & Garcin, B. (2020). Functional motor symptoms in Parkinson’s disease and functional parkinsonism: a systematic review. The Journal of

    • Bologna, M., Paparella, G., Fasano, A., Hallett, M., & Berardelli, A. (2020). Evolving concepts on bradykinesia. Brain, 143(3), 727-750.

    • Nisticò, R., Quattrone, A., Crasà, M., De Maria, M., Vescio, B., & Quattrone, A. (2022). Evaluation of rest tremor in different positions in Parkinson’s disease and essential tremor plus. Neurological Sciences, 43(6), 3621-3627.

    • Kwon, D. Y., Kwon, Y. R., Choi, Y. H., Eom, G. M., Ko, J., & Kim, J. W. (2020). Quantitative measures of postural tremor at the upper limb joints in patients with essential tremor. Technology and Health Care, 28(S1), 499-507.

    • Kumar, S., Goyal, L., & Singh, S. (2022). Tremor and rigidity in patients with Parkinson’s disease: Emphasis on epidemiology, pathophysiology and contributing factors. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 21(7), 596-609.

    • Blesa, J., Foffani, G., Dehay, B., Bezard, E., & Obeso, J. A. (2022). Motor and non-motor circuit disturbances in early Parkinson disease: which happens first?. Nature Reviews Neuroscience, 23(2), 115-128.

    • Hustad, E., & Aasly, J. O. (2020). Clinical and imaging markers of prodromal Parkinson's disease. Frontiers in neurology, 11, 520289.

    • Xie, D., Shen, Q., Zhou, J., & Xu, Y. (2021). Non-motor symptoms are associated with REM sleep behavior disorder in Parkinson’s disease: A systematic review and meta-analysis. Neurological Sciences, 42, 47-60.

    • Yao, L., Liang, W., Chen, J., Wang, Q., & Huang, X. (2023). Constipation in Parkinson’s disease: a systematic review and meta-analysis. European Neurology, 86(1), 34-44.

    • Cheesman, M., Ho, H., Bishop, K., & Sin, M. K. (2021). Constipation management in Parkinson disease. Journal of Neuroscience Nursing, 53(6), 262-266.

    • Torres-Pasillas, G., Chi-Castañeda, D., Carrillo-Castilla, P., Marín, G., Hernández-Aguilar, M. E., Aranda-Abreu, G. E., ... & García, L. I. (2023). Olfactory Dysfunction in Parkinson’s Disease, Its Functional and Neuroanatomical Correlates. NeuroSci, 4(2), 134-151.

    • Franco, R., Garrigós, C., & Lillo, J. (2024). The Olfactory Trail of Neurodegenerative Diseases. Cells, 13(7), 615.

    • Rocha, G. S., Freire, M. A. M., Paiva, K. M., Oliveira, R. F., Morais, P. L. A., Santos, J. R., & Cavalcanti, J. R. L. (2024). The neurobiological effects of senescence on dopaminergic system: a comprehensive review. Journal of Chemical Neuroanatomy, 102415.

    • Ozawa, M., Murakami, H., Shiraishi, T., Umehara, T., Omoto, S., & Iguchi, Y. (2023). Rapid eye movement sleep behavior disorder is associated with decreased quality of life and stigma in people with Parkinson’s disease. Acta Neurologica Belgica, 123(3), 1073-1079.

    • Barone, D. A., & FANA, F. (2024). Secondary RBD: Not Just Neurodegeneration. Sleep Medicine Reviews, 101938.

    • Silindir Gunay, M., Yekta Ozer, A., & Chalon, S. (2016). Drug delivery systems for imaging and therapy of Parkinson’s disease. Current neuropharmacology, 14(4), 376-391.

    • Ozolmez, N., Silindir-Gunay, M., & Volkan-Salanci, B. (2023). An overview: Radiotracers and nano-radiopharmaceuticals for diagnosis of Parkinson's disease. Applied Radiation and Isotopes, 111110.

    • Schapira, A. H., Chaudhuri, K. R., & Jenner, P. (2017). Non-motor features of Parkinson disease. Nature Reviews Neuroscience, 18(7), 435-450.

    • Hansen, C. A., Miller, D. R., Annarumma, S., Rusch, C. T., Ramirez-Zamora, A., & Khoshbouei, H. (2022). Levodopa-induced dyskinesia: A historical review of Parkinson’s disease, dopamine, and modern advancements in research and treatment. Journal of neurology, 269(6), 2892-2909.

    • Stocchi, F. (2006). The levodopa wearing-off phenomenon in Parkinson’s disease: pharmacokinetic considerations. Expert opinion on pharmacotherapy, 7(10), 1399-1407.

    • Baweja, G. S., Gupta, S., Kumar, B., Patel, P., & Asati, V. (2023). Recent updates on structural insights of MAO-B inhibitors: A review on target-based approach. Molecular Diversity, 1-23.

    • Nyholm, D. (2006). Pharmacokinetic optimisation in the treatment of Parkinson’s disease: an update. Clinical pharmacokinetics, 45, 109-136.

    • Alonso-Canovas, A., Voeten, J., Gifford, L., Thomas, O., Lees, A. J., & Bloem, B. R. (2023). The Early Treatment Phase in Parkinson’s Disease: Not a Honeymoon for All, Not a Honeymoon at All?. Journal of Parkinson's Disease, 13(3), 323-328.

    • Fabbri, M., Barbosa, R., & Rascol, O. (2023). Off-time treatment options for Parkinson’s disease. Neurology and therapy, 12(2), 391-424.

    • Ahlskog, J. E., & Muenter, M. D. (2001). Frequency of levodopa‐related dyskinesias and motor fluctuations as estimated from the cumulative literature. Movement disorders: official journal of the Movement Disorder Society, 16(3), 448-458.

    • Holloway, R. G., Shoulson, I., Fahn, S., Kieburtz, K., Lang, A., Marek, K., ... & Watts, A. (2004). Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Archives of neurology, 61(7), 1044-1053.

    • Pandey, S., & Srivanitchapoom, P. (2017). Levodopa-induced dyskinesia: clinical features, pathophysiology, and medical management. Annals of Indian Academy of Neurology, 20(3), 190-198.

    • Schenk, D. B., Koller, M., Ness, D. K., Griffith, S. G., Grundman, M., Zago, W., ... & Kinney, G. G. (2017). First‐in‐human assessment of PRX002, an anti–α‐synuclein monoclonal antibody, in healthy volunteers. Movement disorders, 32(2), 211-218.

    • Jankovic, J., Goodman, I., Safirstein, B., Marmon, T. K., Schenk, D. B., Koller, M., ... & Kinney, G. G. (2018). Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti–α-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA neurology, 75(10), 1206-1214.

    • Weihofen, A., Liu, Y., Arndt, J. W., Huy, C., Quan, C., Smith, B. A., ... & Weinreb, P. H. (2019). Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson's disease models. Neurobiology of disease, 124, 276-288.

    • Brys, M., Fanning, L., Hung, S., Ellenbogen, A., Penner, N., Yang, M., ... & Cedarbaum, J. M. (2019). Randomized phase I clinical trial of anti–α‐synuclein antibody BIIB054. Movement Disorders, 34(8), 1154-1163.

    • Kuhlman, G. D., Flanigan, J. L., Sperling, S. A., & Barrett, M. J. (2019). Predictors of health-related quality of life in Parkinson's disease. Parkinsonism & related disorders, 65, 86-90.

    • Dorsey, E. R., Elbaz, A., Nichols, E., Abbasi, N., Abd-Allah, F., Abdelalim, A., ... & Murray, C. J. (2018). Global, regional, and national burden of Parkinson's disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 17(11), 939-953.

    • McFarthing, K., Rafaloff, G., Baptista, M., Mursaleen, L., Fuest, R., Wyse, R. K., & Stott, S. R. (2022). Parkinson’s disease drug therapies in the clinical trial pipeline: 2022 update. Journal of Parkinson's disease, 12(4), 1073-1082.

    • Regensburger, M., Ip, C. W., Kohl, Z., Schrader, C., Urban, P. P., Kassubek, J., & Jost, W. H. (2023). Clinical benefit of MAO-B and COMT inhibition in Parkinson’s disease: practical considerations. Journal of Neural Transmission, 130(6), 847-861.

    • Wang, K., Liu, Z. H., Li, X. Y., Li, Y. F., Li, J. R., Hui, J. J., ... & Yi, Z. M. (2023). Efficacy and safety of selegiline for the treatment of Parkinson's disease: A systematic review and meta-analysis. Frontiers in Aging Neuroscience, 15, 1134472.

    • Hattori, N., Kajita, M., Fujimoto, S., Izutsu, M., & Fernandez, J. (2024). Safety and effectiveness of rasagiline in patients with Parkinson’s disease in Japan: a post-marketing surveillance study. Expert Opinion on Drug Safety, 23(1), 79-88.

    • ] Espinoza-Vinces, C., Villino-Rodríguez, R., Atorrasagasti-Villar, A., Martí-Andrés, G., & Luquin, M. R. (2023). Impact of Safinamide on Patient-Reported Outcomes in Parkinson’s Disease. Patient Related Outcome Measures, 285-295.

    • Adamiak-Giera, U., Jawień, W., Pierzchlińska, A., Białecka, M., Kobierski, J. D., Janus, T., & Gawrońska-Szklarz, B. (2021). Pharmacokinetics of levodopa and 3-O-methyldopa in parkinsonian patients treated with levodopa and ropinirole and in patients with motor complications. Pharmaceutics, 13(9), 1395.

    • Ceravolo, R., Piccini, P., Bailey, D. L., Jorga, K. M., Bryson, H., & Brooks, D. J. (2002). 18F‐dopa PET evidence that tolcapone acts as a central COMT inhibitor in Parkinson's disease. Synapse, 43(3), 201-207.

    • Reichmann, H. (2023). Real‐world considerations regarding the use of the combination of levodopa, carbidopa, and entacapone (Stalevo®) in Parkinson's disease. European Journal of Neurology, 30, 15-20.

    • Feldman, M., & Margolesky, J. (2023). Opicapone for the treatment of Parkinson’s disease: a review. International Journal of Neuroscience, 133(5), 532-543.

    • Rissardo, J. P., Vora, N. M., Tariq, I., Mujtaba, A., & Caprara, A. L. F. (2023). Deep brain stimulation for the management of refractory neurological disorders: a comprehensive review. Medicina, 59(11), 1991.

    • Mainardi, M., Ciprietti, D., Pilleri, M., Bonato, G., Weis, L., Cianci, V., ... & Antonini, A. (2024). Deep brain stimulation of globus pallidus internus and subthalamic nucleus in Parkinson’s disease: a multicenter, retrospective study of efficacy and safety. Neurological Sciences, 45(1), 177-185.

    • Okun, M. S., & Foote, K. D. (2010). Parkinson’s disease DBS: what, when, who and why? The time has come to tailor DBS targets. Expert review of neurotherapeutics, 10(12), 1847-1857.

    • Yu, H., & Neimat, J. S. (2008). The treatment of movement disorders by deep brain stimulation. Neurotherapeutics, 5(1), 26-36.

    Share This Chapter!