Apitherapy, Phylogenetic Analysis and the Effect of Global Climate Change Honeybee and Products
Sadettin Celik (Author)
Release Date: 2024-04-09
Beekeeping is an agricultural activity that produces products such as honey, royal jelly and propolis, which can be done wherever there are flowers without being dependent on the soil. Global warming reduces honey productivity by causing honey bees to spend more time feeding and cooling their hives. This situation forces honeybees to make more efforts. [...]
Media Type
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Impacts of Climate Change on Bee and Bee Products |
First Page | 1 |
Last Page | 20 |
DOI | https://doi.org/10.69860/nobel.9786053358978.1 |
Page Count | 20 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Sadettin Celik (Author)
Assistant Professor, Bingöl University
https://orcid.org/0000-0002-8396-4627
3Sadettin Çelik completed his doctorate in the field of Plant Biotechnology within the Department of Agricultural Biotechnology. His doctoral thesis focused on determining DNA markers associated with Verticillium wilt disease in cotton through association mapping analysis and the genotyping by sequencing method. Dr. Sadettin Çelik, who is currently working in the Department of Forestry at Bingol university, conducts research in areas such as drought, genetic diversity, Marker Assisted Selection (MAS), Next Generation Sequencing (NGS), Genotyping-by-Sequencing (GBS), Association Mapping, QTL Mapping, bioinformatics, classical and molecular plant breeding, and abiotic and biotic stress.
Kennedy, John; Ramasamy, Selvaraju; Andrew, Robbie; Arico, Salvatore; Bishop, Erin; Braathen, Geir (2019). WMO statement on the State of the Global Climate in 2018. Geneva: Chairperson, Publications Board, World Meteorological Organization. p. 6. ISBN 978-92-63-11233-0. Archived from the original on 12 November 2019. Retrieved 24 November 2019.
https://en.wikipedia.org/wiki/Effects_of_climate_change#cite_noteNASAextremeWeather_ 20230900-6 (Access date: 05.03.2024).
https://www.un.org/en/climatechange/what-is-climate-change (Access date: 05.03.2024).
https://science.nasa.gov/climate-change/what-is-climate-change/ (Access date: 05.03.2024).
https://en.wikipedia.org/wiki/Greenhouse_effect (Access date: 05.06.2024).
Climate Science Special Report / Fourth National Climate Assessment (NCA4), Volume I”. science2017.globalchange.gov. U.S. Global Change Research Program. Archived from the original on 14 December 2019.
nasa.gov. NASA. 2016. Archived from the original on 2 November 2016.
The Study of Earth as an Integrated System”. nasa.gov. NASA. 2016. Archived from the original on 2 November 2016.
Nicholls, Henry (15 June 2015). “The truth about bees”. BBC. Retrieved 9 July 2020.
Michael S. Engel (1999). “The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae: Apis)”. Journal of Hymenoptera Research. 8: 165–196.
Honey Bees”. Encyclopedia of Life. Retrieved 9 July 2020.
Geldmann, Jonas; González-Varo, Juan P. (2018). “Conserving honey bees does not help wildlife”. Science. 359 (6374): 392–393. Bibcode:2018Sci... 359..392G. doi:10.1126/science.aar2269. PMID 29371456. S2CID206665383
İzol, E. (2023). Bazı Arı Ürünlerinin (Bal, Polen, Propolis, Arı Sütü ve Arı Ekmeği) LC-MS/MS ile Sekonder Metabolitlerinin ve Biyolojik Aktivitelerinin Belirlenmesi. Doktora tezi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
İzol, E. (2023). “A Miraculous Bee Product:Propolis”, In Functional Medicine- Part 5, ed. Haspolat Y.K., Atabay A., Aşır F., Orient Publications, 15-24.
Yapıcı, İ., İzol, E., Tarhan, A. (2023). “Significant Bioactive Components in Bee Products”, In Bee and Bee Products, ed. İzol E., Koçyiğit M., Haspolat Y.K., Orient Publications, 1-15.
İzol, E. (2023). “The Place of Bee Products in Functional Medicine”, In Functional Medicine Part 2, ed. Haspolat Y.K., Atlı A., Aşır F., Orient Publications, 11-16.
İzol, E. (2022). “Arı Ürünlerinin Sağlıklı Beslenmedeki Önemi”, In Sağlıklı Yaşam ve Beslenme, ed. Haspolat Y.K., Ertuğrul S., Orient Publications, 313-323.
İzol, E. (2021). “Yenilikçi Arı Ürünleri ve Biyolojik Önemleri.” In Tarım Uygulamalarında Yenilikçi Yaklaşımlar, ed. İnci H., Kökten K., Iksad Publications, 77–116.
Sforcin, J. M., Bankova, V., & Kuropatnicki, A. K. (2017). Medical benefits of honeybee products. Evidence-Based Complementary and Alternative Medicine, 2017.
Toreti, V. C., Sato, H. H., Pastore, G. M., & Park, Y. K. (2013). Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evidence-based complementary and alternative medicine, 2013.
Sforcin, J. M. (2016). Biological properties and therapeutic applications of propolis. Phytotherapy research, 30(6), 894-905.
Roberto, M. M., Jamal, C. M., Malaspina, O., & Marin-Morales, M. A. (2016). Antigenotoxicity and antimutagenicity of ethanolic extracts of Brazilian green propolis and its main botanical source determined by the Allium cepa test system. Genetics and molecular biology, 39, 257-269.
da Silva Frozza, C. O., Garcia, C. S. C., Gambato, G., de Souza, M. D. O., Salvador, M., Moura, S., ... & Roesch-Ely, M. (2013). Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food and chemical toxicology, 52, 137-142.
Khayyal, M. T., El‐Ghazaly, M. A., El‐Khatib, A. S., Hatem, A. M., De Vries, P. J. F., El‐Shafei, S., & Khattab, M. M. (2003). A clinical pharmacological study of the potential beneficial effects of a propolis food product as an adjuvant in asthmatic patients. Fundamental & clinical pharmacology, 17(1), 93-102.
Ghisalberti, E. L. (1979). Propolis: a review. Bee world, 60(2), 59-84.
Borba, R. S., Wilson, M. B., & Spivak, M. (2017). Hidden benefits of honeybee propolis in hives. Beekeeping–from science to practice, 17-38.
Evans, J. D., & Spivak, M. (2010). Socialized medicine: individual and communal disease barriers in honey bees. Journal of invertebrate pathology, 103, S62-S72.
Wilson, M. B., Spivak, M., Hegeman, A. D., Rendahl, A., & Cohen, J. D. (2013). Metabolomics reveals the origins of antimicrobial plant resins collected by honey bees. PloS one, 8(10), e77512.
Antúnez, K., Harriet, J., Gende, L., Maggi, M., Eguaras, M., & Zunino, P. (2008). Efficacy of natural propolis extract in the control of American Foulbrood. Veterinary microbiology, 131(3-4), 324-331.
Bastos, E. M. A., Simone, M., Jorge, D. M., Soares, A. E. E., & Spivak, M. (2008). In vitro study of the antimicrobial activity of Brazilian propolis against Paenibacillus larvae. Journal of Invertebrate Pathology, 97(3), 273- 281.
Simone, M., Evans, J. D., & Spivak, M. (2009). Resin collection and social immunity in honey bees. Evolution, 63(11), 3016-3022.
Wilson, M. B., Brinkman, D., Spivak, M., Gardner, G., & Cohen, J. D. (2015). Regional variation in composition and antimicrobial activity of US propolis against Paenibacillus larvae and Ascosphaera apis. Journal of invertebrate pathology, 124, 44-50.
Almuhayawi, M. S. (2020). Propolis is a novel antibacterial agent. Saudi journal of biological sciences, 27(11), 3079-3086.
Ahangari, Z., Naseri, M., & Vatandoost, F. (2018). Propolis: Chemical composition and its applications in endodontics. Iranian endodontic journal, 13(3), 285.
İzol, E. & Bengü, A.Ş. (2022). “Apiterapi ve Klinik Uygulamalar”, In Sağlık Bilimlerinde İnovatif Yöntemler, Teoriler ve Uygulamalar, ed. Bengü A.Ş., İzol E., Iksad International Publishing House,1, 21.
İzol, E., & İzol, İ. 2022. “Arı Ürünlerinin Spektroskopik Yöntemlerle Metal Konsantrasyonlarının Belirlenmesi ve Çevreye Etkileri”, In Tarımsal Üretimde, Tarımsal Kirliliğin Ayak İzi, ed. Kökten K., İnci Ş., Iksad International Publishing House, 1, 209–230.
İzol, E., Kaya, E., &Karahan, D. (2021). “Investigation of Some Metals in Honey Samples Produced in Different Regions of Bingöl Province by ICPMS. Mellifera 21(1): 1–17.
İzol, E., Yapıcı, İ., Gülçin, İ. (2023). “10-Hydroxy-2-Decenoic Acid (10- HDA) and Bioactive Components in Royal Jelly”, In Biological Activities of Honeybee Products, ed. İzol E., Haspolat Y.K., Gülçin İ., Orient Publications,1-9.
Yapıcı, İ., İzol, E., Gülçin, İ. (2023). “The Effect of Bee Venom in the Treatment of Diseases”, In The Significance of Bee Products in Health, ed. İzol E., Haspolat Y.K., Gülçin İ., Orient Publications, 9-17.
İzol, E., Çağlayan, C. (2023). “Protective Effects of Royal Jelly on Heavy Metal Toxicity”, In The Significance of Bee Products in Health, ed. İzol E., Haspolat Y.K., Gülçin İ., Orient Publications, 1-8.
Chiu, H. F., Han, Y. C., Shen, Y. C., Golovinskaia, O., Venkatakrishnan, K., & Wang, C. K. (2020). Chemopreventive and chemotherapeutic effect of propolis and its constituents: a mini-review. Journal of Cancer Prevention, 25(2), 70.
Botteon, C. E. A., Silva, L. B., Ccana-Ccapatinta, G. V., Silva, T. S., Ambrosio, S. R., Veneziani, R. C. S., ... & Marcato, P. D. (2021). Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Scientific Reports, 11(1), 1974.
Nani, B. D., Franchin, M., Lazarini, J. G., Freires, I. A., da Cunha, M. G., Bueno‐Silva, B., ... & Rosalen, P. L. (2018). Isoflavonoids from Brazilian red propolis down‐regulate the expression of cancer‐related target proteins: a pharmacogenomic analysis. Phytotherapy research, 32(4), 750-754.
Conti, B. J., Santiago, K. B., Cardoso, E. O., Freire, P. P., Carvalho, R. F., Golim, M. A., & Sforcin, J. M. (2016). Propolis modulates miRNAs involved in TLR-4 pathway, NF-κB activation, cytokine production and in the bactericidal activity of human dendritic cells. Journal of Pharmacy and Pharmacology, 68(12), 1604-1612.
Oršolic, N., Car, N., Lisičić, D., Benković, V., Knežević, A. H., Domagoj, D., & Petrik, J. (2013). Synergism between propolis and hyperthermal intraperitoneal chemotherapy with cisplatin on ehrlich ascites tumor in mice. Journal of pharmaceutical sciences, 102(12), 4395-4405.
Cardoso, E. D. O., Conti, B. J., Santiago, K. B., Conte, F. L., Oliveira, L. P. G., Hernandes, R. T., ... & Sforcin, J. M. (2017). Phenolic compounds alone or in combination may be involved in propolis effects on human monocytes. Journal of Pharmacy and Pharmacology, 69(1), 99-108.
Barquinero, J. F., Almonacid, M., Montoro, A., Sebastià, N., Verdu, G., Sahuquillo, V., ... & Soriano, J. M. (2011). Concentration-dependent protection by ethanol extract of propolis against γ-ray-induced chromosome damage in human blood lymphocytes. Evidence-based complementary and alternative medicine, 2011.
Benkovic, V., Knezevic, A. H., Dikic, D., Lisicic, D., Orsolic, N., Basic, I., ... & Kopjar, N. (2008). Radioprotective effects of propolis and quercetin in γ-irradiated mice evaluated by the alkaline comet assay. Phytomedicine, 15(10), 851-858.
Anjaly, K., & Tiku, A. B. (2022). Caffeic acid phenethyl ester induces radiosensitization via inhibition of DNA damage repair in androgen‐independent prostate cancer cells. Environmental Toxicology, 37(5), 995-1006.
Habryka, C., Kruczek, M., & Drygaś, B. (2016). Bee products used in apitherapy. World Scientific News, (48), 254-258.
Trumbeckaite, S., Dauksiene, J., Bernatoniene, J., & Janulis, V. (2015). Knowledge, attitudes, and usage of apitherapy for disease prevention and treatment among undergraduate pharmacy students in Lithuania. Evidence- Based Complementary and Alternative Medicine, 2015.
Ayansola, A. A., & Davies, B. A. (2012). Apitherapy in Southwestern Nigeria: An assessment of therapeutic potentials of some honeybee products. J Pharm Biomed Sci, 2(2), 9-15.
Conti, B. J., Santiago, K. B., Búfalo, M. C., Herrera, Y. F., Alday, E., Velazquez, C., ... & Sforcin, J. M. (2015). Modulatory effects of propolis samples from Latin America (Brazil, Cuba and Mexico) on cytokine production by human monocytes. Journal of Pharmacy and Pharmacology, 67(10), 1431-1438.
Gajardo-Rojas, M., Muñoz, A. A., Barichivich, J., Klock-Barría, K., Gayo, E. M., Fontúrbel, F. E., ... & Veas, C. (2022). Declining honey production and beekeeper adaptation to climate change in Chile. Progress in Physical Geography: Earth and Environment, 46(5), 737-756.
Reddy, P. V., Verghese, A., & Rajan, V. V. (2012). Potential impact of climate change on honeybees (Apis spp.) and their pollination services. Pest Management in Horticultural Ecosystems, 18(2), 121-127.
Rahmad, B., Damiri, N., & Mulawarman, M. (2021). Participation of beekeeping group on forest sustainability in Muara Enim Regency, South Sumatra Province. Sriwijaya Journal of Environment, 6(1), 42-48.
Switanek, M., Brodschneider, R., Crailsheim, K., & Truhetz, H. (2015, April). Impacts of austrian climate variability on honey bee mortality. In EGU General Assembly Conference Abstracts (p. 9575).
Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the royal society B: biological sciences, 274(1608), 303-313.
Novelli, S., Vercelli, M., & Ferracini, C. (2021). An easy mixed-method analysis tool to support rural development strategy decision-making for beekeeping. Land, 10(7), 675.
ŞENGÜL, Z., YÜCEL, B., SANER, G., & TAKMA, Ç. (2023). Investigating the Impact of Climate Parameters on Honey Yield under Migratory Beekeeping Conditions through Decision Tree Analysis: The Case of İzmir Province. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 33(2), 268-280.
Hatjina, F., Costa, C., Büchler, R., Uzunov, A., Drazic, M., Filipi, J., ... & Kezic, N. (2014). Population dynamics of European honey bee genotypes under different environmental conditions. Journal of Apicultural Research, 53(2), 233-247.
Joshi, N. C., & Joshi, P. C. (2010). Foraging behaviour of Apis spp. on apple flowers in a subtropical environment. New York Science Journal, 3(3), 71-76.
Szentgyörgyi, H., Czekońska, K., & Tofilski, A. (2018). Honey bees are larger and live longer after developing at low temperature. Journal of thermal biology, 78, 219-226.
Abou-Shaara, H. F., Al-Ghamdi, A. A., & Mohamed, A. A. (2012). Tolerance of two honey bee races to various temperature and relative humidity gradients. Environmental and experimental Biology, 10(4), 133-138.
https://byjus.com/biology/honey-bee-life-cycle/ (Accessed date: 05.10.2024)
“Bee breeding”. Archived from the original on 2008-08-21. Retrieved 2008-07-16.
https://en.wikipedia.org/wiki/Honey_bee_life_cycle (Accessed date: 05.10.2024)
Çelik, S. (2023). Assessing Drought Tolerance in a Large Number of Upland Cotton Plants (Gossypium hirsutum L.) under Different Irrigation Regimes at the Seedling Stage. Life, 13(10), 2067.
Çelik, S. (2024). Gene expression analysis of potato drought-responsive genes under drought stress in potato (Solanum tuberosum L.) cultivars. PeerJ, 12, e17116.
CELİK, S. (2024). Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit. Turkish Journal of Nature and Science, 13(1), 104-110.
İdikut, L., Zülkadir, G., Polat, C., Çiftçi, S., & Önem, A. B. (2018). Investigation of Different Location and Sowing Dates Effects on Agromorphological Characteristics of Cowpea. In International Gap Agriculture and Livestock Congress. Şanlıurfa/TURKEY.
Phillips, B. B., Shaw, R. F., Holland, M. J., Fry, E. L., Bardgett, R. D., Bullock, J. M., & Osborne, J. L. (2018). Drought reduces floral resources for pollinators. Global change biology, 24(7), 3226-3235.
Moss, E. D., & Evans, D. M. (2022). Experimental climate warming reduces floral resources and alters insect visitation and wildflower seed set in a cereal agro-ecosystem. Frontiers in Plant Science, 13, 826205.
Bawa, K. S., & Dayanandan, S. (1998). Global climate change and tropical forest genetic resources. Climatic change, 39(2), 473-485.
Maebe, K., Hart, A. F., Marshall, L., Vandamme, P., Vereecken, N. J., Michez, D., & Smagghe, G. (2021). Bumblebee resilience to climate change, through plastic and adaptive responses. Global change biology, 27(18), 4223-4237.
McAfee, A., Tarpy, D. R., & Foster, L. J. (2021). Queen honey bees exhibit variable resilience to temperature stress. PloS one, 16(8), e0255381.
Chatha, A. M. M., Naz, S., & Danabas, D. (2022). Effects of environmental factors on the physiology and development of honey bees. Abasyn Journal of Life Sciences, 5(2), 33-51.
Flores, J. M., Gil-Lebrero, S., Gámiz, V., Rodríguez, M. I., Ortiz, M. A., & Quiles, F. J. (2019). Effect of the climate change on honey bee colonies in a temperate Mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment. Science of the Total Environment, 653, 1111-1119.
Le Conte, Y., & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique-Office International des Epizooties, 27(2), 499-510.
Cebotari, V., & Buzu, I. (2021). Impact of climate change of atmospheric precipitations on the vital activity of bees families.
CEBOTARI, V., & BUZU, I. (2023). CLIMATIC CHANGES OF ATMOSPHERIC PRECIPITATION AND THE VITAL ACTIVITY OF BEES. Scientific Papers. Series D. Animal Science, 66(2).
Schweiger, O., Biesmeijer, J. C., Bommarco, R., Hickler, T., Hulme, P. E., Klotz, S., ... & Settele, J. (2010). Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 85(4), 777-795.
Russo, L. (2016). Positive and negative impacts of non-native bee species around the world. Insects, 7(4), 69.
Masters, G., & Norgrove, L. (2010). Climate change and invasive alien species.
Klein, S., Pasquaretta, C., He, X. J., Perry, C., Søvik, E., Devaud, J. M., ... & Lihoreau, M. (2019). Honey bees increase their foraging performance and frequency of pollen trips through experience. Scientific reports, 9(1), 6778.
Reddy, P. R., Rashmi, T., & Verghese, A. (2015). Foraging activity of Indian honey bee Apis cerana, in relation to ambient climate variables under tropical conditions.
Stabentheiner, A., & Kovac, H. (2014). Energetic optimisation of foraging honeybees: flexible change of strategies in response to environmental challenges. PLoS One, 9(8), e105432.
Kenna, D., Pawar, S., & Gill, R. J. (2021). Thermal flight performance reveals impact of warming on bumblebee foraging potential. Functional Ecology, 35(11), 2508-2522.
Cunningham, M. M., Tran, L., McKee, C. G., Polo, R. O., Newman, T., Lansing, L., ... & Guarna, M. M. (2022). Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecological Indicators, 134, 108457.
Rowland, B. W., Rushton, S. P., Shirley, M. D., Brown, M. A., & Budge, G. E. (2021). Identifying the climatic drivers of honey bee disease in England and Wales. Scientific reports, 11(1), 21953.
Shrestha, S. (2019). Effects of climate change in agricultural insect pest. Acta Scientific Agriculture, 3(12), 74-80.
Hristov, P., Shumkova, R., Palova, N., & Neov, B. (2021). Honey bee colony losses: Why are honey bees disappearing?. Sociobiology, 68(1), e5851-e5851.
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |