Release Date: 2024-06-17

Drought Stress Due to Climate Change in Plants and Nanoparticle Interactions

Hatice Gozel (Author), Rukiye Ozkaya (Author), Hakan Cetinkaya (Author)

Release Date: 2024-06-17

Climate change directly affects agriculture and crop production all over the world. Global warming associated with climatic changes leads to a decrease in water resources and causes plants to live under stress conditions. Stress factors negatively affect crop production and increase yield losses. Drought stress is one of the most common abiotic stresses affecting growth [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inClimate Change and Future of Agriculture
    First Page31
    Last Page42
    DOIhttps://doi.org/10.69860/nobel.9786053359449.3
    Page Count12
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Climate change directly affects agriculture and crop production all over the world. Global warming associated with climatic changes leads to a decrease in water resources and causes plants to live under stress conditions. Stress factors negatively affect crop production and increase yield losses. Drought stress is one of the most common abiotic stresses affecting growth and yield and affects many physiological, biochemical and molecular systems in plants. The areas of use of nanomaterials are increasing day by day. The use of nanomaterials in agriculture is seen as an important measure that can be taken against climate change. Nanoparticles are expected to improve the plant’s tolerance level to abiotic stress conditions, increase yield and quality in plants and thus provide new opportunities for the future of agriculture by reducing the impact of factors limiting plant production.
    • Wild, A. (2003). Soils, land and food: managing the land during the twenty-first century. Cambridge University Press, Cambridge.

    • Uzunoğlu, F., Bayazit, S., & Mavi, K. (2015). Küresel iklim değişikliğinin süs bitkileri yetiştiriciliğine etkisi. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 20(2), 66-75..

    • Babalık, Z., & Baydar, N. G. (2021). Asmalarda Kuraklık ve Tuz Stresi. Avrupa Bilim ve Teknoloji Dergisi, (21), 358-368

    • Gong, H., Blackmore, D.H., & Walker, R.R. (2010). Organic and inorganic anions in Shiraz and Chardonnay grape berries and wine as affected by rootstock under saline conditions. Australian Journal of Grape and Wine Research, 16 (1): 227-236.

    • Dere, S. (2021). Kuraklık stresi koşullarında bakteri uygulamasının domates bitkileri üzerine etkileri. Türk Doğa ve Fen Dergisi, 10(1), 52-62.

    • Türkoğlu, N., Şensoy, S., & Aydın, O. (2016). Effects of climate changes on phenological periods of apple, cherry and wheat in Turkey Türkiye’de iklim değişikliğinin elma, kiraz ve buğdayın fenolojik dönemlerine etkileri. Journal of Human Sciences, 13(1), 1036-1057.

    • Farshadfar, E., Ghasempour, H., & Vaezi, H. (2008). Molecular aspects of drought tolerance in bread wheat (T. aestivum). Pakistan Journal of Biological Sciences. 11 (1): 118-122.

    • Flexas, J., Escanola, J.M., & Medrano, H. (1999). Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines, Plant Cell and Environment, 22: 39.

    • Kubilay P, 1999. Bitkilerde Sıcaklık Stresi, Fırat Üniversitesi Biyoloji Bölümü Bitirme Ödevi Elazığ.

    • Özzambak E, 2006 Ege Üni. Ziraat Fakültesi Bahçe Bitkileri Bölümü Ders Notları.

    • Chi HS,2006. Straathorf TP, Löfler HJM, Van Tuyl JM, 2006. DLO Centre For Plant Breeding and Reproduction Research.

    • UNCCD, 1994 UNCCD (United Nations Convention to Combat Desertification), 1994. United Nations Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification Particularly in Africa: Text with Annexes. UNEP, Nairobi

    • Akhoundnejad, Y. (2021). Kuraklık Stresinde Gümüş (Ag) Nanopartiküllerinin Domateste Kalitesi Üzerine Etkileri. Şırnak Üniversitesi Fen Bilimleri Dergisi, 2(1), 1-13.

    • Yavuz, İ., & Yılmaz, E. Ş. (2021). Biyolojik Sistemli Nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi, 2(1), 93-108.

    • Kıyar, Şule. (2020). Gümüş Nanopartiküllerin Antibakteriyel Etkinliğinde Nanopartikül Boyut Etkisi. Yüksek Lisans Tezi. Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü. Konya. 33

    • Yasin, S., Lui, L., & Yao, J.(2013). Biosynthesis of Silver Nanoparticles by Bamboo Leaves Extract and Their Antimicrobial Activity. Journal of Fiber Bioengineering and Informatics I(March), 77-84.

    • Santhoshkumar, T., Rahuman, A. A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A. V., Kim, S. K. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pasific Journal of Tropical Medicine, 7(12), 968-976.

    • Gopinath, K., Karthika, V., Gowri, S., Senthilkumar, V., Kumaresan, S., & Arumugam, A. (2014). Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. Leaf extract. Journal of Nanosteructure in Chemistry, 4(1), 83.

    • Khalid, M. F., et al., Lemon tetraploid rootstock transmits the salt tolerance when grafted with diploid kinnow mandarin by strong antioxidant defense mechanism and efficient osmotic adjustment. Journal of Plant Growth Regulation, 2022. 41: p. 1125–1137.

    • Cinisli, K. T., Uçar, S., & Dikbaş, N. (2019). Nanomateryallerin Tarımda Kullanımı. Yuzuncu Yıl University Journal of Agricultural Sciences, 29(4), 817-831.

    • Zhang, Y., Zhang, C., Liu, K., Zhu, X., Liu, F., & Ge, X. (2018). Biologically synthesized titanium oxide nanostructures combined with morphogenetic protein as wound healing agent in the femoral fracture after surgery. Journal of Photochemistry and Photobiology B: Biology, 182(27), 35–41.

    • Baran, M.F., Eren, A., Umaz, A. (2019). Bazı Mikroorganizmalara Karşı Bitkisel Kaynaklı Olarak Sentezlenmiş Gümüş Nanopartiküllerin Antimikrobiyal Uygulamaları. Gece Kitaplığı, (2), 93–100.

    • Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N., & Dhanaraj, S. A. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15(2), 113–120.

    • Asghar, M. A., Zahir, E., Shahid, S. M., Khan, M. N., Asghar, M. A., Iqbal, J., & Walker, G. (2018). Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1adsorption activity. LWT - Food Science and Technology.

    • Elena, S., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-machado, A.L., Galindo, R., … Souto, E. B. (2020). Metal-Based Nanoparticles as Antimicrobial Agents : An Overview, 1–39.

    • Baran, M.F., Acay, H., Keskin, C. (2020). Determination of Antimicrobial and Toxic Metal Removal Activities of Plant-Based Synthesized ( Capsicum annuum.

    • Liu, R., & Lal, R., 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4, 5686–5691.

    • Dağhan, H. (2017). Nano-Gübreler. Turk J Agric Res., 4(2), 197-203.

    • Sohrab, D., Tehranifara, A., Davarynejada, G., Abadíab, J., Khorasani, R., Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae, 210 (2016), 57–64

    • Naderi, M., Danesh Shahraki, A.A., & Naderi, R. (2011). Application of nanotechnology in the optimization of formulation of chemical fertilizers. Iran J. Nanotech. 12, 16–23.

    • Singh, M.D., Chirag, G., Prakash, P.O., Mohan, M.H.,Prakasha, G., & Vishwajith, (2017). Nano fertilizers is anew way to increase nutrients use efficiency ın cropproduction. International Journal of Agriculture Sciences, 9(7), 3831-3833.

    • Mukherjee, A., Peralta-Videa, J.R., Bandyopadhyay, S., Rico, C.M., Zhao, L., & Gardea- Torresdey, J.L., (2014). Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6, 132-138.

    • Ahmed, B., Hashmi, A., Khan, M. S., & Musarrat, J. (2018). ROS mediated destruction of cell membrane, growth and biofilms of human acterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. Advanced Powder Technology, 29(7), 1601–1616.

    • Sarkar, M. K., Vadivel, V., Charan Raja, M. R., & Mahapatra, S. K. (2018). Potential anti-proliferative activity of AgNPs synthesized using M. longifolia in 4T1 cell line through ROS generation and cell membrane damage. Journal of Photochemistry and Photobiology B: Biology.

    • Qados, A. M. A., Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Journal of Experimental Agriculture International, 2015. 7(2): p. 78.

    • Prasad, R., et al., Nanomaterials act as plant defense mechanism. Nanotechnology: Food and Environmental Paradigm, 2017c. p. 253-269.

    • Djanaguiraman, M., Nair, R., Giraldo, J. P., & Prasad, P. V. V. (2018). Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS omega, 3(10), 14406-14416.

    • Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., ... & Yan, X. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature nanotechnology, 2(9), 577-583

    • Özcan, O., et al., Oksidatif stres ve hücre içi lipit, protein ve DNA yapıları üzerine etkileri. Journal of Clinical and Experimental Investigations, 2015. 6(3): p. 331-336.

    • Omar, R. A., et al., Impact of nanomaterials in plant systems. Plant Nanobionics: Advances in the Understanding of Nanomaterials Research and Applications, 2019. 1: p. 117-140

    • Ma, C.X., White, J.C., Dhankher, O.P., & Xing, B. (2015a). Metal-based nanotoxicity and detoxification pathways in higher plants. Environ. Sci. Technol. 49 (12), 7109-7122.

    • Verma, S. K., et al., Engineered nanomaterials for plant growth and development: a perspective analysis. Science of the Total Environment, 2018. 630: p. 1413-1435.

    Share This Chapter!