Microorganisms: Saviors of the Globe Facing the Consequences of Global Warming and Climate Change
Nihal Dogruoz Gungor (Author), Hilal Erdogan (Author), Nahdhoit Ahamada Rachid (Author)
Release Date: 2024-05-31
Climate change refers to long-term changes in atmospheric conditions, surface temperatures, sea levels, and weather patterns around the world. This change results from natural processes accelerated by anthropogenic activities. These changes have a serious impact on natural ecosystems and endanger life on Earth by causing great pressure on biodiversity and loss of biodiversity. Microorganisms contribute [...]
Media Type
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Ecological Dynamics in the Face of Climate Change |
First Page | 1 |
Last Page | 23 |
DOI | https://doi.org/10.69860/nobel.9786053359258.1 |
Page Count | 23 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Nihal Dogruoz Gungor (Author)
Professor, Istanbul Universty
https://orcid.org/0000-0002-8098-039X
3Nihal Doğruöz Güngör is a Professor in the Department of Fundamental and Industrial Microbiology at Istanbul University. She obtained her doctorate at Istanbul University in 2008, focusing on microbiological corrosion of copper. Her research interests include cave microbiology, antimicrobial activities of bacteria, microbial corrosion and biotechnology.
Nahdhoit Ahamada Rachid (Author)
Istanbul Universty
https://orcid.org/0000-0001-5943-0273
3Nahdhoit Ahamada Rachid is a microbiologist from Istanbul University. She is a PhD student in the Department of Fundamental and Industrial Microbiology (Institute of Graduate Studies in Science, Istanbul University, Turkey). She obtained her MSc in 2021 from the same department, focusing on human impacts on cave microbial diversity. Her research interests include cave microbiology, bioremediation, microbial ecology, and biotechnology.
Hilal Erdogan (Author)
Istanbul Universty
https://orcid.org/0009-0005-8404-6827
3Hilal Erdoğan is graduated from Istanbul University in Biology department. Curently, she is a master’s student in the department of Fundamental and Industrial Microbiology in the Institute of Graduate Studies in Sciences from the same university. Her research interesting areas include microbial ecology, antimicrobial activities, and microbial enzymatic activities.
Abirami, B., Radhakrishnan, M., Kumaran, S., & Wilson, A. (2021). Impacts of global warming on marine microbial communities. Sci Total Environ, 791, 147905.
Alcamán-Arias, M. E., Fuentes-Alburquenque, S., Vergara-Barros, P., Cifuentes-Anticevic, J., Verdugo, J., Polz, M., ... & Díez, B. (2021). Coastal bacterial community response to glacier melting in the Western Antarctic Peninsula. Microorganisms, 9(1), 88.
Arpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Constr Build Mater, 282, 122722.
Ashwin, R., Bagyaraj, D. J., & Mohan Raju, B. (2023). Ameliorating the drought stress tolerance of a susceptible soybean cultivar, MAUS 2 through dual inoculation with selected rhizobia and AM fungus. Fungal Biol Biotechnol, 10, 10.
Avila, N., Lopez-Flores, R., & Quintana, X. D. (2019). Composition of pelagic microbial communities in Mediterranean coastal aquatic ecosystems under extreme drought conditions. Estuar Coast Shelf Sci, 216, 139-147.
Baldrian, P., López-Mondéjar, R., & Kohout, P. (2023). Orman mikrobiyomu ve küresel değişim. Nat Rev Microbiol, 21, 487–501.
Ball, P. N., MacKenzie, M. D., DeLuca, T. H., & Montana, W. H. (2010). Wildfire and charcoal enhance nitrification and ammonium‐oxidizing bacterial abundance in dry montane forest soils. J Environ Qual, 39(4), 1243-1253.
Barnard, S., Van Goethem, M. W., de Scally, S. Z., Cowan, D. A., van Rensburg, P. J., Claassens, S., & Makhalanyane, T. P. (2020). Increased temperatures alter viable microbial biomass, ammonia oxidizing bacteria and extracellular enzymatic activities in Antarctic soils. FEMS Microbiol Ecol, 96(5), fiaa065.
Bedmar, E. J., Robles, E. F., & Delgado, M. J. (2005). The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum.
Borgogni, F., Lavecchia, A., Mastrolonardo, G., Certini, G., Ceccherini, M. T., & Pietramellara, G. (2019). Immediate-and short-term wildfire impact on soil microbial diversity and activity in a Mediterranean forest soil. Soil Sci, 184(2), 35-42.
Bourne, A. E., Creek, D., Peters, J. M., Ellsworth, D. S., & Choat, B. (2017). Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Ann Bot, 120(1), 123-133.
Bu, C., Lu, X., Zhu, D., et al. (2022). Soil improvement by microbially induced calcite precipitation (MICP): A review about mineralization mechanism, factors, and soil properties. Arab J Geosci, 15, 863.
Bunse, C., Lundin, D., Karlsson, C. M., Akram, N., Vila-Costa, M., Palovaara, J., ... & Pinhassi, J. (2016). Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2. Nat Clim Change, 6(5), 483-487.
Cañaveras, J. C., Cuezva, S., Sanchez-Moral, S., Lario, J., Laiz, L., Gonzalez, J. M., & Saiz-Jimenez, C. (2006). On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften, 93, 27–32.
Casadevall, A. (2022). Immunity to invasive fungal diseases. Annu Rev Immunol, 40, 121-141.
Castro, H. F., Classen, A. T., Austin, E. E., Norby, R. J., & Schadt, C. W. (2010). Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol, 76(4), 999-1007.
Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., ... & Webster, N. S. (2019). Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol, 17(9), 569-586.
Ciais, P., Sabine, C., Bala, G., et al. (2013). Carbon and other biogeochemical cycles. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465–570). Cambridge University Press.
Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A., Cregger, M. A., ... & Patterson, C. M. (2015). Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead? Ecosphere, 6(8), 1-21.
Conlin, L. K., & Nelson, H. C. (2007). The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor. Mol Cell Biol, 27(4), 1505-1515.
Cuezva, S., Fernandez-Cortes, A., Porca, E., Pašić, L., Jurado, V., Hernandez-Marine, M., ... & Saiz-Jimenez, C. (2012). The biogeochemical role of Actinobacteria in Altamira cave, Spain. FEMS Microbiol Ecol, 81(1), 281-290.
D'Alò, F., Odriozola, I., Baldrian, P., Zucconi, L., Ripa, C., Cannone, N., ... Onofri, S. (2021). Microbial activity in alpine soils under climate change. Sci Total Environ, 783, 147012.
Danovaro, R., Corinaldesi, C., Dell’Anno, A., & Rastelli, E. (2017). Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiol Lett, 364(23), fnx214.
Day, N. J., Dunfield, K. E., Johnstone, J. F., Mack, M. C., Turetsky, M. R., Walker, X. J., ... & Baltzer, J. L. (2019). Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. Global Change Biol, 25(7), 2310-2324.
Dietrich, J., Hammerl, J. A., Johne, A., Kappenstein, O., Loeffler, C., Nöckler, K., ... & Richter, M. H. (2023). Impact of climate change on foodborne infections and intoxications. J Health Monit, 8(Suppl 3), 78.
Ding, L., Zhou, J., Li, Q., Tang, J., & Chen, X. (2022). Effects of land-use type and flooding on the soil microbial community and functional genes in reservoir riparian zones. Microb Ecol, 83(2), 393-407.
Donhauser, J., Qi, W., Bergk-Pinto, B., & Frey, B. (2021). High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high-mountain soils. Global Change Biol, 27(7), 1365–1386.
Fadiji, A. E., Babalola, O. O., Santoyo, G., & Perazzolli, M. (2022). The potential role of microbial biostimulants in the amelioration of climate change-associated abiotic stresses on crops. Front Microbiol, 12, 829099.
Feng, L., Zhang, Z., Yang, G., Wu, G., Yang, Q., & Chen, Q. (2023). Microbial communities and sediment nitrogen cycle in a coastal eutrophic lake with salinity and nutrients shifted by seawater intrusion. Environ Res, 225, 115590.
Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R., Beardall, J., ... & Wheeler, G. L. (2012). Changes in pH at the exterior surface of plankton with ocean acidification. Nat Clim Change, 2(7), 510-513.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., ... Van Dorland, R. (2007). Changes in atmospheric constituents and in radiative forcing. Chapter 2.
Gao, K., Helbling, E. W., Häder, D. P., & Hutchins, D. A. (2012). Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar Ecol Prog Ser, 470, 167-189.
Garrett, R. D., Lambin, E. F., & Naylor, R. L. (2013). The new economic geography of land use change: Supply chain configurations and land use in the Brazilian Amazon. Land Use Policy, 34, 265-275.
Gonzalez-Pimentel, J. L., Martin-Pozas, T., Jurado, V., Miller, A. Z., Caldeira, A. T., Fernandez-Lorenzo, O., ... & Saiz-Jimenez, C. (2021). Prokaryotic communities from a lava tube cave in La Palma Island (Spain) are involved in the biogeochemical cycle of major elements. PeerJ, 9, e11386.
Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A., & Jones, C. M. (2018). Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol, 26(1), 43–55.
Haywood, B. J., Hayes, M. P., White, J. R., & Cook, R. L. (2020). Potential fate of wetland soil carbon in a deltaic coastal wetland subjected to high relative sea level rise. Sci Total Environ, 711, 135185.
Hu, Y., Wang, S., Niu, B., Chen, Q., Wang, J., Zhao, J., ... Zhang, G. (2020). Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe. Environ Res, 189, 109917.
Huang, M. T., & Zhai, P. M. (2023). Desertification dynamics in China's drylands under climate change. Adv Clim Change Res, 14(3), 429–436.
Ibáñez, A., Garrido-Chamorro, S., & Barreiro, C. (2023). Microorganisms and climate change: a not so invisible effect. Microbiol Res, 14(3), 918-947.
IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. https://www.cambridge.org/core/search?pageNum=1&filters%5BauthorTerms%5D=%20Intergovernmental%20Panel%20on%20Climate%20Change%20(IPCC) Accessed 06.06.2024
IPCC, 2019. Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. www.ipcc.ch/srccl/. Accessed 06.06.2024.
IPCC, 2014: Climate change 2014. https://www.ipcc.ch/report/ar5/syr/. Accessed 06.06.2024.
Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nat Rev Microbiol, 18(1), 35-46.
Jeffry, L., Ong, M. Y., Nomanbhay, S., Mofijur, M., Mubashir, M., & Show, P. L. (2021). Greenhouse gases utilization: A review. Fuel, 301, 121017.
Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., Guangchun, L., & Wilmshurst, J. M. (2017). Biodiversity losses and conservation responses in the Anthropocene. Science, 356(6335), 270-275.
Jones, E. B. G. (2000). Marine fungi: Some factors influencing biodiversity. Fungal Div., 4, 53–73.
Katayanagi, N., Fumoto, T., Hayano, M., Shirato, Y., Takata, Y., Leon, A., & Yagi, K. (2017). Estimation of total CH4 emission from Japanese rice paddies using a new estimation method based on the DNDC-Rice simulation model. Sci Total Environ, 601, 346–355.
Kumar, A., & Verma, J. P. (2018). Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res., 207, 41–52.
Kumar, V., Sarma, V. V., Thambugala, K. M., Huang, J. J., Li, X. Y., & Hao, G. F. (2021). Ecology and evolution of marine fungi with their adaptation to climate change. Front Microbiol, 12, 719000.
Li, T., & Zhou, Q. (2020). The key role of Geobacter in regulating emissions and biogeochemical cycling of soil-derived greenhouse gases. Environ Pollut, 266, 115135.
Lin, W., Ye, Q., Liang, J., Tang, X., Shi, J., Liu, L., ... & Lan, S. (2023). Response mechanism of interaction between Rhododendron hainanense and microorganisms to heat stress. Ind Crops Prod, 199, 116764.
McMichael, A. J. (2013). Globalization, climate change, and human health. N Engl J Med, 368(14), 1335-1343.
Madsen, E. L. (2011). Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol, 22(3), 456-464.
Mar, K. A., Unger, C., Walderdorff, L., & Butler, T. (2022). Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environ Sci Policy, 134, 127–136.
Martin-Pozas, T., Cuezva, S., Fernandez-Cortes, A., Cañaveras, J. C., Benavente, D., Jurado, V., ... & Sanchez-Moral, S. (2022). Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics. Sci Total Environ, 831, 154921.
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F., ... & Taylor, K. E. (2007). The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull Am Meteorol Soc, 88(9), 1383-1394.
Melillo, J. M., Steudler, P. A., Aber, J. D., Newkirk, K., Lux, H., Bowles, F. P., ... & Morrisseau, S. (2002). Soil Warming and Carbon-Cycle Feedbacks to the Climate System. Science, 298(5592), 2173-2176.
Meng, M., Wang, B., Zhang, Q., & Tian, Y. (2021). Driving force of soil microbial community structure in a burned area of Daxing’anling, China. J Forestry Res, 32(4), 1723-1738.
Miao, Y., Zhang, L., Li, B., Zhang, Q., Wang, S., & Peng, Y. (2017). Enhancing ammonium oxidizing bacteria activity was key to single-stage partial nitrification-anammox system treating low-strength sewage under intermittent aeration condition. Bioresour Technol, 231, 36–44.
Miller, A. Z., Garcia-Sanchez, A. M., Martin-Sanchez, P. M., Costa Pereira, M. F., Spangenberg, J. E., Jurado, V., ... & Saiz-Jimenez, C. (2018). Origin of abundant moonmilk deposits in a subsurface granitic environment. Sedimentology, 65(5), 1482–1503.
Naidoo, Y., Valverde, A., Pierneef, R. E., et al. (2022). Differences in Precipitation Regime Shape Microbial Community Composition and Functional Potential in Namib Desert Soils. Microb Ecol, 83(3), 689–701.
Nelson, K. S., Baltar, F., Lamare, M. D., et al. (2020). Ocean acidification affects microbial community and invertebrate settlement on biofilms. Sci Rep, 10, 3274.
Noorashikin Md. Noor, N. M. N., Moumita De, M. D., Amirah Iskandar, A. I., Keng WanLeong, K. W., Zaidi Che Cob, Z. C. C., Mazlan Abd. Ghaffar, M. A. G., & Simon Kumar Das, S. K. D. (2019). Effects of elevated carbon dioxide on the growth and welfare of juvenile tiger grouper (Epinephelus fuscoguttatus)× giant grouper (E. lanceolatus) hybrid.
Onley, J. R., Ahsan, S., Sanford, R. A., & Löffler, F. E. (2018). Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl Environ Microbiol, 84(4), e01985–17.
Panday, P. K., Coe, M. T., Macedo, M. N., Lefebvre, P., & de Almeida Castanho, A. D. (2015). Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J Hydrol, 523, 822-829.
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., ... & Williams, S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332), eaai9214.
Peter, D., et al. (2007). "Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia". Nature, 450(7171), 879–882.
Pold, G., Melillo, J. M., & DeAngelis, K. M. (2015). Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front Microbiol, 6, 137757.
Raffa, R. B., Eltoukhy, N. S., & Raffa, K. F. (2012). Implications of climate change (global warming) for the healthcare system. J Clin Pharm Ther, 37(5), 502-504.
Rath, K. M., Fierer, N., Murphy, D. V., & Rousk, J. (2019). Linking bacterial community composition to soil salinity along environmental gradients. ISME J, 13(3), 836-846.
Raven, J. A., Giordano, M., Beardall, J., & Maberly, S. C. (2011). Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res, 109, 281-296.
Rifai, I. A., Al Khawaja, A. A., & Abdul Hameed, I. M. (2023). A review study on the effects of climate change on agriculture, livestock and forests in Pakistan. Zagazig J Agric Res, 50(5), 613–622.
Sanford, R. A., Wagner, D. D., Wu, Q., Chee-Sanford, J. C., Thomas, S. H., Cruz-Garcia, C., ... Löffler, F. E. (2012). Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci USA, 109, 19709–19714.
Sangiorgio, D., Cellini, A., Donati, I., Pastore, C., Onofrietti, C., & Spinelli, F. (2020). Facing climate change: Application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy, 10(6), 794.
Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress‐response physiology and its implications for ecosystem function. Ecology, 88(6), 1386-1394.
Schindlbacher, A., Rodler, A., Kuffner, M., Kitzler, B., Sessitsch, A., & Zechmeister-Boltenstern, S. (2011). Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem, 43(7), 1417-1425.
Schlesinger, W. H., & Lichter, J. (2001). Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature, 411(6836), 466-469.
Shan, J., Sanford, R. A., Chee-Sanford, J., Ooi, S. K., Löffler, F. E., Konstantinidis, K. T., & Yang, W. H. (2021). Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Global Change Biol, 27(12), 2669–2683.
Sharma, A., & Ramkrishnan, R. (2016). Study on effect of microbial induced calcite precipitates on strength of fine grained soils. Perspect Sci, 8, 198-202.
Shen, R., Lan, Z., Rinklebe, J., Nie, M., Hu, Q., Yan, Z., ... & Chen, J. (2021). Flooding variations affect soil bacterial communities at the spatial and inter-annual scales. Sci Total Environ, 759, 143471.
Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat Rev Microbiol, 8(11), 779-790.
Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K., & Arbizu, P. M. (2008). Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol, 23(9), 518-528.
Sorensen, P. O., Templer, P. H., & Finzi, A. C. (2016). Contrasting effects of winter snowpack and soil frost on growing season microbial biomass and enzyme activity in two mixed-hardwood forests. Biogeochemistry, 128(1-2), 141-154.
Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep, 10, 13768.
Tang, Y. S., Wang, L., Jia, J. W., Fu, X. H., Le, Y. Q., Chen, X. Z., & Sun, Y. (2011). Response of soil microbial community in Jiuduansha wetland to different successional stages and its implications for soil microbial respiration and carbon turnover. Soil Biol Biochem, 43(3), 638-646.
United Nations. (2022). World Population Prospects 2022: Summary of Results (UN DESA/POP/2022/TR/NO. 3). UN.
Vicente-Serrano, S. M., McVicar, T. R., Miralles, D. G., Yang, Y., & Tomas-Burguera, M. (2020). Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Wiley Interdiscip Rev: Clim Change, 11(2), e632.
Vriezen, J. A., De Bruijn, F. J., & Nusslein, K. (2007). Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol, 73(11), 3451-3459.
Wan, Y., Zhou, L., Wang, S., Liao, C., Li, N., Liu, W., & Wang, X. (2018). Syntrophic growth of Geobacter sulfurreducens accelerates anaerobic denitrification. Front Microbiol, 9, 1572.
Wang, J., Fan, H., He, X., Zhang, F., Xiao, J., Yan, Z., ... & Li, R. (2021). Response of bacterial communities to variation in water quality and physicochemical conditions in a river-reservoir system. Global Ecol Conserv, 27, e01541.
Wang, Z., Tsementzi, D., Williams, T. C., Juarez, D. L., Blinebry, S. K., Garcia, N. S., ... & Hunt, D. E. (2021). Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity. ISME J, 15(1), 19-28.
Weiman, S. (2015). Microbes help to drive global carbon cycling and climate change. Microbe Mag, 10(6), 233-238.
Wichern, J., Wichern, F., & Joergensen, R. G. (2006). Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma, 137(1-2), 100-108.
Xiao, X., Biradar, C. M., Czarnecki, C., Alabi, T., & Keller, M. (2009). A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia. Remote Sens, 1(3), 355-374.
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |