Histopathological and Molecular Markers of Metastatic Prostate Cancer
Nagehan Ersoy Tunali (Author), Ceyda Nur Zaim (Author)
Release Date: 2024-06-19
In this section, main histopathological and molecular markers of metastatic prostate cancer are highlighted. Digital rectal examination (DRE), and the prostate-specific antigen (PSA) test are the two commonly used PCa detection techniques in the clinic. However, since they lack sensitivity and specificity, there’s an urgent requirement for more precise diagnostic approaches. Histopathological assessment of prostate [...]
Media Type
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Current Management of Metastatic Prostate Cancer |
First Page | 1 |
Last Page | 21 |
DOI | https://doi.org/10.69860/nobel.9786053359142.1 |
Page Count | 21 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Nagehan Ersoy Tunali (Author)
PhD, Associate Professor of Molecular Biology and Genetics, Istanbul Medeniyet University
https://orcid.org/0000-0001-5460-3569
3Nagehan ERSOY TUNALI received her Ph.D degree in Molecular Biology and Genetics at Boğaziçi University. She had the opportunity to get experienced in molecular research studies at University of Manchester, IMSEB-CNR, and University of Wales College of Medicine. She has built a successful career in molecular neurodegeneration and molecular oncology, contributing to her field over a span of twenty years. She been involved in numerous research projects involving molecular neurodegeneration and molecular oncology, together with the common mechanisms involved in neurodegenerative diseases and cancer. She currently works at İstanbul Medeniyet University, and holds the position as the Head of the Department of Molecular Oncology. Her specializations in cancer research are extended to genetic susceptibility to urological and breast cancers, diagnostic and prognostic biomarker discovery for prostate cancer, and reversal of drug resistance in prostate cancer using in vitro and in vivo disease models.
Ceyda Nur Zaim (Author)
MSc, Istanbul Medeniyet University
https://orcid.org/0009-0007-3939-750X
3Ceyda Nur ZAİM received her B.Sc.degree in Molecular Biology and Genetics at Çanakkale Onsekiz Mart University and her M.Sc. degree in Molecular Biology and Genetics at İstanbul Medeniyet University. She had experiences in cancer and neurodegeneration research, involving especially prostate cancer in vivo and in vitro modeling, drug resistance, molecular pathways of miRNAs related to prostate cancer and finally, blood-based biomarkers of Alzheimer’s Disease.
Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.who.int/today, accessed [08 May 2024].
Ng Shievon Smith Jonathan Shamash K, Ng Á Smith Á J Shamash KS, Ther O. Metastatic hormone-sensitive prostate cancer (mHSPC): advances and treatment strategies in the first-line setting. Oncology and Therapy 2020;8(2):209–230.
Sartor O, Bono JS de. Metastatic prostate cancer. Longo DL, Editor; N Engl J Med 2018;378(7):645–657.
Schröder FH, Hugosson J, Carlsson S, Tammela T, Määttänen L, Auvinen A, et al. Screening for prostate cancer decreases the risk of developing metastatic disease: findings from the european randomized study of screening for prostate cancer (ERSPC). Eur Urol 2012;62(5):745–752.
Schröder FH, Hugosson J, Roobol MJ, Tammela TLJ, Ciatto S, Nelen V, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med 2012;366(11):981–990.
Pierre-Victor D, Parnes HL, Andriole GL, Pinsky PF. Prostate cancer incidence and mortality following a negative biopsy in a population undergoing PSA screening. Urol 2021;155:62–69.
Saini S. PSA and beyond: alternative prostate cancer biomarkers. Cellular Oncology 2016;39(2):97–106.
Humphrey PA. Histopathology of prostate cancer. Cold Spring Harb Perspect Med 2017;7(10); 1-21.
Epstein JI, Egevad L, Humphrey PA, Montironi R, Amin MB, Ulbright TM, et al. Best practices recommendations in the application of immunohistochemistry in the prostate: report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol 2014;38(8); e6-e19.
Komohara Y, Ohnishi K, Takeya M. Possible functions of CD169-positive sinus macrophages in lymph nodes in anti-tumor immune responses. Cancer Sci 2017;108(3):290–295.
Strömvall K, Sundkvist K, Ljungberg B, Halin Bergström S, Bergh A. Reduced number of CD169+ macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients. Prostate 2017;77(15):1468–1477.
Fakhari M, Pullirsch D, Abraham D, Paya K, Hofbauer R, Holzfeind P, et al. Selective upregulation of vascular endothelial growth factor receptors neuropilin-1 and -2 in human neuroblastoma. Cancer 2002;94(1):258–263.
Parikh AA, Fan F, Liu WB, Ahmad SA, Stoeltzing O, Reinmuth N, et al. Neuropilin-1 in human colon cancer: expression, regulation, and role in induction of angiogenesis. Am J Pathol 2004;164(6):2139–2151.
Hong TM, Chen YL, Wu YY, Yuan A, Chao YC, Chung YC, et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clinical Cancer Research 2007;13(16):4759–47568.
Tang YH, Rockstroh A, Sokolowski KA, Lynam LR, Lehman M, Thompson EW, et al. Neuropilin-1 is over-expressed in claudin-low breast cancer and promotes tumor progression through acquisition of stem cell characteristics and RAS/MAPK pathway activation. Breast Cancer Research 2022;24(1):1–17.
. Tse BWC, Volpert M, Ratther E, Stylianou N, Nouri M, McGowan K, et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene 2017;36(24):3417–3427.
Futamura N, Nakamura S, Tatematsu M, Yamamura Y, Kannagi R, Hirose H. Clinicopathologic significance of sialyl Lex expression in advanced gastric carcinoma. Br J Cancer 2000;83(12):1681–1687.
Schiffmann L, Schwarz F, Linnebacher M, Prall F, Pahnke J, Krentz H, et al. A novel sialyl LeX expression score as a potential prognostic tool in colorectal cancer. World J Surg Oncol 2012;10(1):1–6.
Torii A, Nakayama A, Harada A, Nakao A, Nonami T, Sakamoto J, et al. Expression of the C D I 5 antigen in hepatocellular carcinoma. Cancer 1993;71(12): 3864-3867.
Croce MV. An Introduction to the relationship between lewis x and malignancy mainly related to breast cancer and head neck squamous cell carcinoma (HNSCC). Cancer Invest 2022;40(2):173–183.
Cozzolino I, Vitagliano G, Caputo A, Montella M, Franco R, Ciancia G, et al. CD15, CD30, and PAX5 evaluation in Hodgkin’s lymphoma on fine-needle aspiration cytology samples. Diagn Cytopathol 2020;48(3):211–216.
Wang P, Gong S, Liao B, Pan J, Wang J, Zou D, et al. HIF1α/HIF2α induces glioma cell dedifferentiation into cancer stem cells through Sox2 under hypoxic conditions. J Cancer 2022;13(1):1–14.
Fukushima K. Expression of Lewis(x), sialylated Lewis(x), Lewis(a), and sialylated Lewis(a) antigens in human lung carcinoma. Tohoku J Exp Med 1991;163(1):17–30.
Jørgensen T, Berner A, Danielsen HE, Bryne M, Kaalhus O, Tveter KJ. Up-Regulation of the pligosaccharide Sialyl Lewisx: a new prognostic parameter in metastatic prostate cancer. Cancer Res 1995;55(9):1817–1819.
Satoh M, Numahata K, Kawamura S, Saito S, Orikasa S. Lack of selectin-dependent adhesion in prostate cancer cells expressing Sialyl Lex. International Journal of Urology 1998;5(1):86–91.
Mastelić A, Čulić VČ, Mužinić NR, Vuica-Ross M, Barker D, Leung EY, et al. Glycophenotype of breast and prostate cancer stem cells treated with thieno[2,3-b] pyridine anticancer compound. Drug Des Devel Ther 2017;11:759–769.
You Z, Dong Y, Kong X, Zhang Y, Vessella RL, Melamed J. Differential expression of IL17RC isoforms in androgen-dependent and androgen-independent prostate cancers. Neoplasia 2007;9(6):464–470.
You Z, Shi XB, DuRaine G, Haudenschild D, Tepper CG, Lo SH, et al. Interleukin-17 receptor-like gene is a novel antiapoptotic gene highly expressed in androgen-independent prostate cancer. Cancer Res 2006;66(1):175–183.
Cunningham D, Zhang Q, Liu S, Parajuli KR, Nie Q, Ma L, et al. Interleukin-17 promotes metastasis in an immunocompetent orthotopic mouse model of prostate cancer. Am J Clin Exp Urol 2018;6(3):114.
Janiczek M, Szylberg Ł, Szylberg Ł, Antosik P, Kasperska A, Marszałek A, et al. Expression levels of IL-17A, IL-17F, IL-17RA, and IL-17RC in prostate cancer with taking into account the histological grade according to gleason scale in comparison to benign prostatic hyperplasia: in search of new therapeutic options. J Immunol Res 2020 May 25;2020:4910595.
Pérez-Martínez FC, Carrión B, Lucío MI, Rubio N, Herrero MA, Vázquez E, et al. Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorn delivered siRNA. Biomaterials 2012;33(32):8152–8159.
Wang W, Mouneimne G, Sidani M, Wyckoff J, Chen X, Makris A, et al. The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol 2006;173(3):395–404.
Li M, Yin J, Mao N, Pan L. Upregulation of phosphorylated cofilin 1 correlates with taxol resistance in human ovarian cancer in vitro and in vivo. Oncol Rep 2013;29(1):58–66.
Zhou J, Wang Y, Fei J, Zhang W. Expression of cofilin 1 is positively correlated with the differentiation of human epithelial ovarian cancer. Oncol Lett 2012;4(6):1187–1190.
Mousavi S, Safaralizadeh R, Hosseinpour-Feizi M, Azimzadeh-Isfanjani A, Hashemzadeh S. Study of cofilin 1 gene expression in colorectal cancer. J Gastrointest Oncol 2018;9(5):791–796.
Chen L, Cai J, Huang Y, Tan X, Guo Q, Lin X, et al. Identification of cofilin-1 as a novel mediator for the metastatic potentials and chemoresistance of the prostate cancer cells. Eur J Pharmacol 2020;880:173100.
Lu L, Fu N, Luo X, Li XY, Li XP. Overexpression of cofilin 1 in prostate cancer and the corresponding clinical implications. Oncol Lett 2015;9(6):2757–2761.
Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nature Reviews Cancer 2014;14(11):736–746.
Wu P, Wu D, Zhao L, Huang L, Shen G, Huang J, et al. Prognostic role of STAT3 in solid tumors: a systematic review and meta-analysis. Oncotarget 2016;7(15):19863–19883.
Tam L, McGlynn LM, Traynor P, Mukherjee R, Bartlett JMS, Edwards J. Expression levels of the JAK/STAT pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer. Br J Cancer 2007;97(3):378–383.
McConnell B V., Koto K, Gutierrez-Hartmann A. Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression. Mol Cancer 2011;10(1):1–13.
Zhou Y, Su J, Shi L, Liao Q, Su Q. DADS downregulates the Rac1-ROCK1/PAK1- LIMK1-ADF/cofilin signaling pathway, inhibiting cell migration and invasion. Oncol Rep 2013;29(2):605–612.
Mardilovich K, Gabrielsen M, McGarry L, Orange C, Patel R, Shanks E, et al. Elevated LIM kinase 1 in nonmetastatic prostate cancer reflects its role in facilitating androgen receptor nuclear translocation. Mol Cancer Ther 2015;14(1):246–258.
Huang JB, Wu YP, Lin YZ, Cai H, Chen SH, Sun XL, et al. Up-regulation of LIMK1 expression in prostate cancer is correlated with poor pathological features, lymph node metastases and biochemical recurrence. J Cell Mol 2020;24(8):4698–4706.
Huang Y, Huang H, Pan XW, Xu DF, Cui XG, Chen J, et al. The prognostic value of lymphovascular invasion in radical prostatectomy: a systematic review and meta-analysis. Asian J Androl 2016;18(5):780–785.
Surget S, Khoury MP, Bourdon JC. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther 2013;7:57–68.
Shiran MS, Tan GC, Sabariah AR, Rampal L, Phang KS. p63 as a complimentary basal cell specific marker to high molecular weight-cytokeratin in distinguishing prostatic carcinoma from benign prostatic lesions. Med J Malaysia 2007;62(1):36–39.
Sun X, Kaufman PD. Ki-67: more than a proliferation marker. Chromosoma 2018;127(2):175–186.
Tan HL, Haffner MC, Esopi DM, Vaghasia AM, Giannico GA, Ross HM, et al. Prostate adenocarcinomas aberrantly expressing p63 are molecularly distinct from usual-type prostatic adenocarcinomas. Modn Pathol 2015;28(3):446–456.
Martini C, Logan JM, Sorvina A, Gordon C, Beck AR, S-Y. Ung B, et al. Aberrant protein expression of Appl1, Sortilin and Syndecan-1 during the biological progression of prostate cancer. Pathology 2023;55(1):40–51.
Yu YP, Ding Y, Chen Z, Liu S, Michalopoulos A, Chen R, et al. Novel fusion transcripts associate with progressive prostate cancer. Am J Pathol 2014;184(10):2840–2849.
Lee Y, Yoon J, Ko D, Yu M, Lee S, Kim S. TMPRSS4 promotes cancer stem–like properties in prostate cancer cells through upregulation of SOX2 by SLUG and TWIST1. J Exp Clin Cancer Res 2021;40(1):1–19.
Santos NJ, Camargo ACL, Carvalho HF, Justulin LA, Felisbino SL. Prostate cancer secretome and membrane proteome from Pten conditional knockout mice identify potential biomarkers for disease progression. Int J Mol Sci 2022;23(16):9224.
Deras IL, Aubin SMJ, Blase A, Day JR, Koo S, Partin AW, et al. PCA3: A molecular urine assay for predicting prostate biopsy outcome. J Urol 2008;179(4):1587–1592.
Hessels D, Klein Gunnewiek JMT, Van Oort I, Karthaus HFM, Van Leenders GJL, Van Balken B, et al. DD3PCA3-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 2003;44(1):8–16.
Marks LS, Fradet Y, Lim Deras I, Blase A, Mathis J, Aubin SMJ, et al. PCA3 Molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urol 2007;69(3):532–535.
Wei JT, Feng Z, Partin AW, Brown E, Thompson I, Sokoll L, et al. Can urinary PCA3 supplement PSA in the early detection of prostate cancer; J Clin Oncol 2014;32(36):4066–4072
Prensner JR, Zhao S, Erho N, Schipper M, Iyer MK, Dhanasekaran SM, et al. RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol 2014;15(13):1469–1480.
Mehra R, Shi Y, Udager AM, Prensner JR, Sahu A, Iyer MK, et al. A novel RNA in situ hybridization assay for the long noncoding RNA SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate cancer. Neoplasia 2014;16(12):1121–1127.
Cesnik AJ, Yang B, Truong A, Etheridge T, Spiniello M, Steinbrink MI, et al. Long noncoding RNAs AC009014.3 and newly discovered XPLAID differentiate aggressive and indolent prostate cancers. Transl Oncol 2018;11(3):808–184.
Bartel DP. Metazoan MicroRNAs. Cell 2018;173(1):20–51.
Rana S, Valbuena GN, Curry E, Bevan CL, Keun HC. MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. Br J Cancer 2022;126(3):502–513.
Feng S, Qian X, Li H, Zhang X. Combinations of elevated tissue miRNA-17-92 cluster expression and serum prostate-specific antigen as potential diagnostic biomarkers for prostate cancer. Oncol Lett 2017;14(6):6943–6949.
Larne O, Martens-Uzunova E, Hagman Z, Edsjö A, Lippolis G, Den Berg MSV Van, et al. miQ—A novel microRNA based diagnostic and prognostic tool for prostate cancer. Int J Cancer 2013;132(12):2867–2875.
Hansen EB, Fredsøe J, Okholm TLH, Ulhøi BP, Klingenberg S, Jensen JB, et al. The transcriptional landscape and biomarker potential of circular RNAs in prostate cancer. Genome Med 2022;14(1):1–16.
Koistinen H, Künnapuu J, Jeltsch M. KLK3 in the Regulation of angiogenesis—tumorigenic or not? International Journal of Molecular Sciences 2021;22(24):13545.
Gao Y, Wang YT, Chen Y, Wang H, Young D, Shi T, et al. Proteomic tissue-based classifier for early prediction of prostate cancer progression. Cancers 2020;12(5):1268.
Lygirou V, Fasoulakis K, Stroggilos R, Makridakis M, Latosinska A, Frantzi M, et al. Proteomic analysis of prostate cancer FFPE samples reveals markers of disease progression and aggressiveness. Cancers (Basel) 2022;14(15):3765.
Shipitsin M, Small C, Choudhury S, Giladi E, Friedlander S, Nardone J, et al. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. Br J Cancer 2014;111(6):1201–1212
Garcia-Marques F, Liu S, Totten SM, Bermudez A, Tanimoto C, Hsu EC, et al. Protein signatures to distinguish aggressive from indolent prostate cancer. Prostate 2022;82(5):605–616.
Ahmad F, Cherukuri MK, Choyke PL. Metabolic reprogramming in prostate cancer. Br J Cancer 2021;125(9):1185–1196.
Shao J, Zhu W, Ding Y, Zhu H, Jing X, Yu H, et al. Phosphorylation of LIFR promotes prostate cancer progression by activating the AKT pathway. Cancer Lett 2019;451:110–121.
Attard G, Parker C, Eeles RA, Schröder F, Tomlins SA, Tannock I, et al. Prostate cancer. The Lancet 2016;387(10013):70–82.
Mitra A, Fisher C, Foster CS, Jameson C, Barbachanno Y, Bartlett J, et al. Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br J Cancer 2008;98(2):502–507
Teroerde M, Nientiedt C, Duensing A, Hohenfellner M, Stenzinger A, Duensing S. Revisiting the Role of p53 in Prostate Cancer.; Bott SRJ, Ng KL, editors. Prostate Cancer; Brisbane (AU): Exon Publications; 2021;113-123.
Nientiedt C, Budczies J, Endris V, Kirchner M, Schwab C, Jurcic C, et al. Mutations in TP53 or DNA damage repair genes define poor prognostic subgroups in primary prostate cancer. Urologic Oncology: Seminars and Original Investigations 2022;40(1):8 e11-8.e18.
Aggarwal RR, Quigley DA, Huang J, Zhang L, Beer TM, Rettig MB, et al. Whole-genome and transcriptional analysis of treatment-emergent small-cell neuroendocrine prostate cancer demonstrates intraclass heterogeneity. Molecular Cancer Research 2019;17(6):1235–1240.
Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A 2019;166(23):11428–11436.
Mangolini A, Rocca C, Bassi C, Ippolito C, Negrini M, Dell’Atti L, et al. Detection of disease-causing mutations in prostate cancer by NGS sequencing. Cell Biol Int 2022;46(7):1047–1061.
Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010;18(1):11–22.
Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 2018;174(3):758-769.e9.
Silva MP, Barros-Silva JD, Vieira J, Lisboa S, Torres L, Correia C, et al. NCOA2 is a candidate target gene of 8q gain associated with clinically aggressive prostate cancer. Genes Chromosomes Cancer 2016;55(4):365–374.
Cotter K, Rubin MA. The evolving landscape of prostate cancer somatic mutations. Prostate 2022;82(S1):S13–24.
Rosenbaum E, Hoque MO, Cohen Y, Zahurak M, Eisenberger MA, Epstein JI, et al. Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clinical Cancer Research 2005;11(23):8321–8325.
Vasiljević N, Ahmad AS, Carter PD, Fisher G, Berney DM, Foster CS, et al. DNA methylation of PITX2 predicts poor survival in men with prostate cancer. Biomark Med 2014;8(9):1143–1150.
Richiardi L, Fiano V, Vizzini L, De Marco L, Delsedime L, Akre O, et al. Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. Journal of Clinical Oncology 2009;27(19):3161–3168.
Wyatt AW, Annala M, Aggarwal R, Beja K, Feng F, Youngren J, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in Prostate Cancer. JNCI: Journal of the National Cancer Institute 2017;109(12); 1-9.
Ellinger J, Bastian PJ, Haan KI, Heukamp LC, Buettner R, Fimmers R, et al. Noncancerous PTGS2 DNA fragments of apoptotic origin in sera of prostate cancer patients qualify as diagnostic and prognostic indicators. Int J Cancer 2008;122(1):138–143.
Hennigan ST, Trostel SY, Terrigino NT, Voznesensky OS, Schaefer RJ, Whitlock NC, etal. Low abundance of circulating tumor DNA in localized prostate cancer. JCO Precis Oncol 2019;(3):1–13.
Lau E, McCoy P, Reeves F, Chow K, Clarkson M, Kwan EM, et al. Detection of ctDNA in plasma of patients with clinically localised prostate cancer is associated with rapid disease progression. Genome Med 2020;12(1):1–11.
Souza MF De, Kuasne H, De Barros-Filho MC, Cilião HL, Marchi FA, Fuganti PE, et al. Circulating mRNA signature as a marker for high-risk prostate cancer. Carcinogenesis 2020;41(2):139–145.
Cooperberg MR, Pasta DJ, Elkin EP, Litwin MS, Latini DM, Duchane J, et al. The university of California, San Francisco Cancer of the prostate risk assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol 2005;173(6):1938–1942.
Hoey C, Ahmed M, Fotouhi Ghiam A, Vesprini D, Huang X, Commisso K, et al. Circulating miRNAs as non-invasive biomarkers to predict aggressive prostate cancer after radical prostatectomy. J Transl Med 2019;17(1):1–11.
Zhao F, Olkhov-Mitsel E, van der Kwast T, Sykes J, Zdravic D, Venkateswaran V, et al. Urinary DNA methylation biomarkers for noninvasive prediction of aggressive disease in patients with prostate cancer on active surveillance. J Urol 2017;197(2):335–341.
O’Reilly E, Tuzova A V., Walsh AL, Russell NM, O’Brien O, Kelly S, et al. epiCaPture: A urine DNA methylation test for early detection of aggressive prostate cancer. JCO Precis Oncol 2019;(3):1–18
Roest HP, IJzermans JNM, van der Laan LJW. Evaluation of RNA isolation methods for microRNA quantification in a range of clinical biofluids. BMC Biotechnol 2021;21(1):1–11.
McKiernan J, Donovan MJ, O’Neill V, Bentink S, Noerholm M, Belzer S, et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2016;2(7):882–889.
Fredsøe J, Rasmussen AKI, Thomsen AR, Mouritzen P, Høyer S, Borre M, et al. Diagnostic and prognostic MicroRNA biomarkers for prostate cancer in cell-free urine. Eur Urol Focus 2018;4(6):825–833.
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |