Release Date: 2024-06-17

Viticulture in a Warming World: Navigating Climate Challenges

Release Date: 2024-06-17

Grapevine (Vitis vinifera) cultivation represents a significant sector of global agriculture, contributing to the production of wine grapes, table grapes, dried fruits, and fruit juice. While traditionally thriving in diverse climatic and soil conditions, grapevines are increasingly challenged by the impacts of climate change, including rising temperatures, altered precipitation patterns, and heightened occurrences of extreme [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inClimate Change and Future of Agriculture
    First Page15
    Last Page29
    DOIhttps://doi.org/10.69860/nobel.9786053359449.2
    Page Count15
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Grapevine (Vitis vinifera) cultivation represents a significant sector of global agriculture, contributing to the production of wine grapes, table grapes, dried fruits, and fruit juice. While traditionally thriving in diverse climatic and soil conditions, grapevines are increasingly challenged by the impacts of climate change, including rising temperatures, altered precipitation patterns, and heightened occurrences of extreme weather events. This review examines the multifaceted challenges posed by climate change on grapevine cultivation, focusing on key stressors such as heat stress, drought, flooding, alterations in soil dynamics, early maturation, and increased susceptibility to pests and diseases. Furthermore, the review explains adaptation strategies that can be employed to enhance resilience to climate-related risks and ensure the sustainability of viticulture under evolving environmental conditions. In conclusion, this review emphasizes the necessity for collaborative research efforts and proactive measures within the viticultural community to address the challenges posed by climate change and safeguard the future of grapevine cultivation and wine production.
    • OIV. (2023). State of the World Vıne and Wıne Sector in 2023. Retrieved 06.05.2024 from https://www.oiv.int/index.php/what-we-do/statistics

    • FAO. (2024). Retrieved 06.05.2024 from https://www.fao.org/faostat/en/#data/RL

    • Wohlfahrt, Y., Smith, J., Tittmann, S., Honermeier, B., & Stoll, M. (2018). Primary productivity and physiological responses of Vitis vinifera L. cvs. under Free Air Carbon dioxide Enrichment (FACE). European Journal of Agronomy, 101, 149-162

    • Matthews, M. A., & Anderson, M. M. (1989). Reproductive development in grape (Vitis vinifera L.): responses to seasonal water deficits. American Journal of Enology and Viticulture, 40(1), 52-60

    • Alikadic, A., Pertot, I., Eccel, E., Dolci, C., Zarbo, C., Caffarra, A., De Filippi, R., & Furlanello, C. (2019). The impact of climate change on grapevine phenology and the influence of altitude: A regional study. Agricultural and Forest Meteorology, 271, 73-82.

    • Bernardo, S., Dinis, L.-T., Machado, N., & Moutinho-Pereira, J. (2018). Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agronomy for Sustainable Development, 38(6), 66.

    • Van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., Pieri, P., Parker, A., De Resseguier, L., & Ollat, N. (2019). An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9(9), 514..

    • Zhang, K., CHEN, B.-h., Yan, H., Rui, Y., & WANG, Y.-a. (2018). Effects of short-term heat stress on PSII and subsequent recovery for senescent leaves of Vitis vinifera L. cv. Red Globe. Journal of integrative agriculture, 17(12), 2683-2693..

    • IPCC. (2023). Climate Change 2023 Synthesis Report. Retrieved 09.052024 from https://www.ipcc.ch/report/ar6/syr/

    • Kuzucu, M., Dökmen, F., & Güneş, A. (2016). Effects of climate change on agriculture production under rain-fed condition. International Journal of Electronics Mechanical and Mechatronics Engineering, 6(1), 1057-1065.

    • Medrano, H., Tortosa, I., Montes, E., Pou, A., Balda, P., Bota, J., & Escalona, J. (2018). Water scarcity and sustainable agriculture in semiarid environment: tools, strategies, and challenges for woody crops..

    • Gambetta, G. A. (2016). Water stress and grape physiology in the context of global climate change. Journal of Wine Economics, 11(1), 168-180..

    • Ouyang, W., Struik, P. C., Yin, X., & Yang, J. (2017). Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experimental Botany, 68(18), 5191-5205

    • Hochberg, U., Albuquerque, C., Rachmilevitch, S., Cochard, H., David‐Schwartz, R., Brodersen, C. R., McElrone, A., & Windt, C. W. (2016). Grapevine petioles are more sensitive to drought induced embolism than stems: evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation. Plant, Cell & Environment, 39(9), 1886-1894.

    • Tombesi, S., Frioni, T., Poni, S., & Palliotti, A. (2018). Effect of water stress “memory” on plant behavior during subsequent drought stress. Environmental and Experimental Botany, 150, 106-114.

    • Hague, B. S. (2021). Seasonal climate summary for Australia and the southern hemisphere (summer 2018–19): extreme heat and flooding prominent. Journal of Southern Hemisphere Earth Systems Science, 71(1), 147-158.

    • Carvalho, L. C., Vidigal, P., & Amâncio, S. (2015). Oxidative stress homeostasis in grapevine (Vitis vinifera L.). Frontiers in Environmental Science, 3, 20.

    • Ponnamperuma, F. N. (1972). The chemistry of submerged soils. Advances in agronomy, 24, 29-96.

    • Kuzucu, M., & Gökçen, I. S. (2024). Micro-Catchment Rain Water Harvesting Technology in Conservation Agriculture and Plant Production. Bangladesh Journal Of Botany, 53(1), 9-16.

    • Kawai, Y., Benz, J., & Kliewer, W. M. (1996). Effect of flooding on shoot and root growth of rooted cuttings of four grape rootstocks. Journal of the Japanese Society for Horticultural Science, 65(3), 455-461..

    • Mugnai, S., Marras, A. M., & Mancuso, S. (2011). Effect of hypoxic acclimation on anoxia tolerance in Vitis roots: response of metabolic activity and K+ fluxes. Plant and Cell Physiology, 52(6), 1107-1116.

    • Nguyen, L. T., Osanai, Y., Anderson, I. C., Bange, M. P., Braunack, M., Tissue, D. T., & Singh, B. K. (2018). Impacts of waterlogging on soil nitrification and ammonia-oxidizing communities in farming system. Plant and Soil, 426, 299-311..

    • Brady, N. C., Weil, R. R., & Weil, R. R. (2017). The nature and properties of soils (15 ed.). Prentice Hall Upper Saddle River, NJ.

    • Kılıç, A., Kuzucu, M., & Gökçen, I. S. (2023). Kilis İli Tarım Topraklarının Beslenme Durumunun İncelenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 20(3), 631-641.

    • Firanj Sremac, A., Lalic, B., Cuxart, J., & Marcic, M. (2021). Maximum, Minimum, and daily air temperature range in orchards: what do observations reveal? Atmosphere, 12(10), 1279.

    • Van Leeuwen, C., Roby, J. P., & De Resseguier, L. (2018). Soil-related terroir factors: A review. Oeno One, 52(2), 173-188.

    • Feng, X., Qian, C., & Materia, S. (2022). Amplification of the temperature seasonality in the Mediterranean region under anthropogenic climate change. Geophysical Research Letters, 49(20), e2022GL099658

    • Schultz, H. (2022). Soil, vine, climate change; the challenge of predicting soil carbon changes and greenhouse gas emissions in vineyards and is the 4 per 1000 goal realistic? This article is published in cooperation with Terclim 2022 (XIVth International Terroir Congress and 2nd ClimWine Symposium), 3-8 July 2022, Bordeaux, France. Oeno One, 56(2), 251-263.

    • Bernardo, S., Dinis, L., Luzio, A., Machado, N., Gonçalves, A., Vives-Peris, V., Pitarch Bielsa, M., López Climent, M. F., Malheiro, A., & Correia, C. (2021). Optimising grapevine summer stress responses and hormonal balance by applying kaolin in two Portuguese Demarcated Regions

    • Sadras, V., Petrie, P., Moran, M., Bastian, S., & Taylor, D. (2013). Decompressing harvest and preserving wine style in warming climates. Australian and New Zealand Grapegrower and Winemaker(594), 47.

    • Gatti, M., Garavani, A., Cantatore, A., Parisi, M. G., Bobeica, N., Merli, M. C., Vercesi, A., & Poni, S. (2015). Interactions of summer pruning techniques and vine performance in the white vitis vinifera cv. o rtrugo. Australian Journal of Grape and Wine Research, 21(1), 80-89

    • Leolini, L., Moriondo, M., Romboli, Y., Gardiman, M., Costafreda-Aumedes, S., de Cortázar-Atauri, I. G., Bindi, M., Granchi, L., & Brilli, L. (2019). Modelling sugar and acid content in Sangiovese grapes under future climates: An Italian case study. Climate Research, 78(3), 211-224...

    • Oczkowski, E. (2016). The effect of weather on wine quality and prices: An Australian spatial analysis. Journal of Wine Economics, 11(1), 48-65.

    • Webb, L., Whetton, P., Bhend, J., Darbyshire, R., Briggs, P., & Barlow, E. (2012). Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nature Climate Change, 2(4), 259-264.

    • Hall, A., & Jones, G. V. (2009). Effect of potential atmospheric warming on temperature‐based indices describing Australian winegrape growing conditions. Australian Journal of Grape and Wine Research, 15(2), 97-119.

    • Dry, I., Davies, C., Dunlevy, J., Smith, H., Thomas, M., Walker, A., Walker, R., & Clingeleffer, P. (2022). Development of new wine‐, dried‐and tablegrape scions and rootstocks for Australian viticulture: past, present and future. Australian Journal of Grape and Wine Research, 28(2), 177-195

    • Yeung, E., van Veen, H., Vashisht, D., Sobral Paiva, A. L., Hummel, M., Rankenberg, T., Steffens, B., Steffen-Heins, A., Sauter, M., & de Vries, M. (2018). A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 115(26), E6085-E6094.

    • De Bei, R., Wang, X., Papagiannis, L., Fuentes, S., Gilliham, M., Tyerman, S., & Collins, C. (2020). Shoot thinning of Semillon in a hot climate did not improve yield and berry and wine quality.

    • Palliotti, A., Frioni, T., Tombesi, S., Sabbatini, P., Cruz-Castillo, J. G., Lanari, V., Silvestroni, O., Gatti, M., & Poni, S. (2017). Double-pruning grapevines as a management tool to delay berry ripening and control yield. American Journal of Enology and Viticulture, 68(4), 412-421.

    • Kuzucu, M. (2019). Effects of water harvesting and organic fertilizer on vineyard (Vitis vinifera L.) yield and soil moisture content under arid conditions. Bangladesh Journal of Botany, 48(4), 1215-1221.

    • Ferrara, G., Boselli, M., Palasciano, M., & Mazzeo, A. (2023). Effect of shading determined by photovoltaic panels installed above the vines on the performance of cv. Corvina (Vitis vinifera L.). Scientia Horticulturae, 308, 111595.

    • Gökçen, I. S., & Kuzucu, M. (2023). Soil quality and fertility in vineyards of Kilis province of Turkey, the northwest of “fertile crescent”. Emirates Journal of Food and Agriculture.

    Share This Chapter!