Release Date: 2024-06-17

Effects of Drought on Agriculture

Huri Tasci (Author)

Release Date: 2024-06-17

With the increasing world population, excessive and unconscious use of resources on earth disrupts the balance of nature. The disturbed balance affects many factors such as hunger, disappearance of living species, soil and environmental pollution, deterioration of vegetation, water scarcity. Since fruit growing is a perennial agricultural activity, it is greatly affected by climate change. [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inClimate Change and Future of Agriculture
    First Page43
    Last Page56
    DOIhttps://doi.org/10.69860/nobel.9786053359449.4
    Page Count14
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    With the increasing world population, excessive and unconscious use of resources on earth disrupts the balance of nature. The disturbed balance affects many factors such as hunger, disappearance of living species, soil and environmental pollution, deterioration of vegetation, water scarcity. Since fruit growing is a perennial agricultural activity, it is greatly affected by climate change. Extreme weather conditions occurring during winter rest, flowering, bud formation and fruiting period, which are important for the cultivation of fruit species, affect the cultivation to a great extent. Therefore, there are significant decreases in fruit yield and quality. Drought stress is becoming more and more important in fruit growing due to the decline in the quantity and quality of water resources worldwide and causes changes in the normal physiological functions of economically important plants. In this study, it was aimed to synthesise the studies on the effects of drought on plants, physiological reactions and adaptation mechanisms of plants, the effects of climate change on fruit growing, to better understand the importance of the subject and to contribute to new researches.
    • Anonim, (2007). Biodiversity and Climate Change, Biodiversity and Climate Change, Convention on Biological Diversity (CBD).

    • Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z. ve Chen, S. (2021). Bitkilerin kuraklık stresine tepki mekanizması. Bahçe Bitkileri, 7 (3), 50.

    • IPCC, (2023). Climate Change 2023, Synthesis Report IPCC. Erişim tarihi: 09.05.2024.

    • IPCC, (2018). Global Warming of 1.5°C, IPCC. Erişim tarihi: 09.05.2024.

    • IPCC, (2007).Climate Change 2007, Synthesis Report IPCC.

    • Kapluhan, E. (2013) Türkiye’de kuraklık ve kuraklığın tarıma etkisi, Marmara Coğrafya Dergisi (27), 487-510.

    • Öztürk, E., & Sefaoğlu, F. (2022). Bölüm 3 Kuraklık (Su) Stresi. Bitkilerde Abiyotik Ve Biyotik, 57.

    • Meteoroloji Genel Müdürlüğü (MGM), 2024. 2023 Yılı İklim Değerlendirmesi, İklim - Zirai Meteoroloji Dairesi Başkanlığı ve Araştırma Dairesi Başkanlığı, Ocak 2024, Ankara, s. 2 ve s.3.

    • Hermanson, L., Smith, D., Seabrook, M., Bilbao, R., Doblas-Reyes, F., Tourigny, E., ... & Kumar, A. (2022). WMO global annual to decadal climate update: a prediction for 2021–25. Bulletin of the American Meteorological Society, 103(4), E1117-E1129

    • Wilhite, D.A, M.H Glantz. (1985). Understanding the drought phenomenon-the role of definitions, Water International 10: 111–120.

    • Kalefetoğlu, T., & Ekmekci, Y. (2005). The effects of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18(4), 723-740.

    • Kadıoğlu, M. (2008). Kuraklık risk yönetimi, Konya Kapalı Havzası Yeraltı Suyu ve Kuraklık Konferansı, 11–12 Eylül 2008, Konya

    • Dracup, J.A, K.S Lee, E.G Paulson. (1980). On the definition of droughts. Water Resources Research 16(2):297-302.

    • Sırdaş, S. (2002). Meteorolojik kuraklık modellemesi ve Türkiye uygulaması, İTÜ Fen Bilimleri Enstitüsü (Doktora Tezi), İstanbul.

    • Okunlola, G. O., Olatunji, O. A., Akinwale, R. O., Tariq, A., & Adelusi, A. A. (2017). Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Scientia Horticulturae, 224, 198-205

    • Kaur, H., Kohli, SK, Khanna, K. ve Bhardwaj, R. (2021). Bitkilerde su eksikliğinin etkisinin incelenmesi: Transkripsiyonel düzenleme, sinyalleme, fotosentetik etkinlik ve yönetim. Physiologia Plantarum , 172 (2), 935-962..

    • Chaudhry, S., & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41(1), 1-31

    • Jeyasri, R., Muthuramalingam, P., Satish, L., Pandian, S. K., Chen, J. T., Ahmar, S., ... & Ramesh, M. (2021). An overview of abiotic stress in cereal crops: Negative impacts, regulation, biotechnology and integrated omics. Plants, 10(7), 1472

    • Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: causes, consequences, and tolerance. Drought stress tolerance in plants, Vol 1: physiology and biochemistry, 1-16

    • Chaves, M.M., et al., (2002). How Plants Cope With Water Stress in The Field, Photosynthesis and Growth, Ann. Bot., 89, 907-916.

    • Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in plant science, 5, 76566.

    • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional plant biology, 30(3), 239-264.

    • Gürel, A., & Avcıoğlu, R. (2001). Bitkilerde strese dayanıklılık fizyolojisi. Bitki Biyoteknolojisi II, Genetik Mühendisliği ve Uygulamaları, 21, 308-313.

    • Mundree, S. G., Baker, B., Mowla, S., Peters, S., Marais, S., Vander Willigen, C., ... & Thomson, J. A. (2002). Physiological and molecular insights into drought tolerance. African Journal of Biotechnology, 1(2), 28-38.

    • Reddy, A. R., Chaitanya, K. V., Jutur, P. P., & Sumithra, K. (2004). Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environmental and experimental botany, 52(1), 33-42..

    • Ashraf, M. J. B. P. (1994). Organic substances responsible for salt tolerance in Eruca sativa. Biologia Plantarum, 36(2), 255-259.

    • Salama, S., Trivedi, S., Busheva, M., Arafa, A.A., Garab, G., & Erdei, L. (1994). Effects of NaCl salinity on growth, cation accumulation, chloroplast syructure and function in wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 144 (2): 241-247.

    • Öztürk, N. Z. (2015). Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Turkish Journal Of Agriculture-Food Science And Technology, 3(5), 307-315

    • Banerjee, A., & Roychoudhury, A. (2016). Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regulation, 79, 1-17..

    • Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C. & Lei, W. (2011) Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032..

    • Bhargava, S. & Sawant, K. (2013) Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breeding, 132(1), 21–32.

    • Cabello, J.V., Loydeyri, A.F. & Zurbriggen, M.D. (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Plant Biology, 26, 62–70.

    • Gökkür S., 2019. İklim Değişikliği ve Tarımda Fiyat İstikrarı, Apelasyon, ISSN:2149-4908, Aralık 2019, Sayı 73.

    • Efe, R., A. Soykan., S. Sönmez ve İ. Cürebal, 2009 “Sıcaklık Şartlarının Türkiye’de Zeytinin (Olea europae l.) Yetiştirilmesine, Fenolojik ve Pomolojik Özelliklerine Etkisi”. Ekoloji 18, 70, 17-26 (2009)..

    • Ayaz, M., & Varol, N. (2015). The effect of climatic parameters changing (heat, raining, snow, relative humidity, fog, hail, and wind) on olive growing. Zeytin Bilimi, 5, 33-40..

    • Balcıoğlu, Y. E., Coşkun, K. A. Y. A., & Demircan, M. (2022). İklim değişikliğinin Malatya ilinde kayısı rekoltesi ve coğrafi dağılışına etkileri. JENAS Journal of Environmental and Natural Studies, 4(2), 119-146.

    • Luedeling, E., & Brown, P. H. (2011). A global analysis of the comparability of winter chill models for fruit and nut trees. International journal of biometeorology, 55, 411-421..

    • B. Ustaoğlu ve M. Karaca, “Türkiye’de sıcaklık koşullarının fındık tarımına olası Etkileri,” itüdergisi/d, mühendislik, cilt 9, no. 3: s. 153-161, 2010..

    • Campoy, J. A., Ruiz, D., & Egea, J. (2011). Dormancy in temperate fruit trees in a global warming context: a review. Scientia Horticulturae, 130(2), 357-372..

    • S. Gökkür ve M. Şahin, “İklim değişikliğinin meyve ağaçlarında soğuk zararı üzerine etkileri,” Meyve Bilimi, cilt 7, no. 1: s.10-16, 2020

    • Gradziel, T. M., Lampinen, B., Connell, J. H., & Viveros, M. (2007). Winters’ almond: an early-blooming, productive, and high-quality pollenizer for ‘Nonpareil. HortScience, 42(7), 1725-1727.

    • Ertin, G., 2000, “Edremit Körfezi Çevresinde Zeytin Üretimi” Türk Coğrafya Dergisi Sayı: 35, İstanbul, s. 228..

    • Varol, N., 2009 “Zeytinde Yıllara Göre Değişen Verim (Periyodisite)” “Zeytin kitabı” T.C. Tarım ve Köyişleri Bakanlığı Teşkilatlandırma ve Destekleme Genel Müdürlüğü, Televizyon Yoluyla Yaygın Çiftçi Eğitimi Projesi (YAYÇEP ). Sayfa: 99-109

    • Braun, P., & Müller, M. (2012). Effects of climate change on fruit production in the state of Hesse. INKLIM Module II plus, Abstract of final report.

    • Baldocchi, D., Wong, S. Accumulated winter chill is decreasing in the fruit growing regions of California. Climatic Change 87 (Suppl 1), 153–166 (2008).

    • Luedeling E, Zhang M, Girvetz EH (2009) Climatic Changes Lead to Declining Winter Chill for Fruit and Nut Trees in California during 1950–2099. PLoS ONE 4(7): e6166

    • Darbyshire R., Webb L., Goodwin I. and Barlow S., 2011. Winter chilling trends for deciduous fruit trees in Australia. In: Agricultural and Forest Meteorology, 151, p. 1074-1085.

    • Ghrab, M., Ben Mimoun, M., Masmoudi, M. M., & Ben Mechlia, N. (2016). Climate change and vulnerability of the pistachio and almond crops in the Mediterranean arid areas. In Options Méditerranéennes, A XVI GREMPA Meeting on Almonds and Pistachio (Vol. 119, pp. 247-251).

    • Ahmadi, H., Baaghideh, M. & Dadashi-Roudbari, A. Climate change impacts on pistachio cultivation areas in Iran: a simulation analysis based on CORDEX-MENA multi-model ensembles. Theor Appl Climatol 145, 109–120 (2021)..

    • İmrak, B., Sarıer, A., Çimen, B., Çömlekçioğlu, S., Tütüncü, M., Küden, A. B., & Küden, A. (2013). Bazı Şeftali Ve Nektarin Çeşitlerinin Subtropik İklim Koşullarindaki Çoklu Meyve Oluşumu Sorununun Çözümüne İlişkin Araştırmalar. Tarım Bilimleri Araştırma Dergisi, (2), 25-33.

    • Guédon, Y., & Legave, J. M. (2008). Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context. Ecological Modelling, 219(1-2), 189-199.

    • Legave, J. M., Christen, D., Giovannini, D., & Oger, R. (2008, October). Global warming in Europe and its impacts on floral bud phenology in fruit species. In Workshop on Berry Production in Changing Climate Conditions and Cultivation Systems. COST-Action 863: Euroberry Research: from 838 (pp. 21-26).

    • Zavalloni, C., Andresen, J. A., Winkler, J. A., Flore, J. A., Black, J. R., & Beedy, T. L. (2004, June). The Pileus Project: climatic impacts on sour cherry production in the Great Lakes Region in past and projected future time frames. In VII International Symposium on Modelling in Fruit Research and Orchard Management 707 (pp. 101-108)..

    • Moretti, C. L., Mattos, L. M., Calbo, A. G., & Sargent, S. A. (2010). Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Research International, 43(7), 1824-1832.

    • Şahin, M., Topal, E., Özsoy, N., & Altunoğlu, E. (2015). İklim değişikliğinin meyvecilik ve arıcılık üzerine etkileri. Anadolu Doğa Bilimleri Dergisi, 6(2), 147-154..

    Share This Chapter!