Release Date: 2024-06-10

Pediatric Bone Tumors

Release Date: 2024-06-10

Primary bone tumors are predominantly observed in the pediatric age group. Among benign bone tumors, osteochondroma is the most common, while osteosarcoma is the most frequent among malignant tumors. Important radiological criteria have been established to distinguish between benign and malignant tumors. Critical findings to consider include the patient's age, the localization of the lesion, [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inThe Radiology of Cancer
    First Page365
    Last Page403
    DOIhttps://doi.org/10.69860/nobel.9786053359364.26
    Page Count39
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Primary bone tumors are predominantly observed in the pediatric age group. Among benign bone tumors, osteochondroma is the most common, while osteosarcoma is the most frequent among malignant tumors. Important radiological criteria have been established to distinguish between benign and malignant tumors. Critical findings to consider include the patient’s age, the localization of the lesion, the morphological characteristics of the lesion, and the presence and type of periosteal reaction. By evaluating these findings, the differential diagnosis list can often be significantly narrowed. However, the primary expectation from radiology is not a specific diagnosis but rather an assessment of whether the lesion is malignant or benign. Radiography plays a crucial role in this distinction by highlighting important features such as periosteal reaction and the zone of transition. The radiography-based Lodwick classification, which evaluates the transition zone and margin characteristics of the bone lesion, is an important classification for indicating the aggressiveness of the lesion.

    Halil Ibrahim Sara (Author)
    MD, Radiologist, Konya Beyhekim Training and Research Hospital
    https://orcid.org/0000-0001-9075-9237
    3Halil İbrahim ŞARA completed his medical education at Hacettepe University Faculty of Medicine. He completed his radiology specialization training at Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital. Currently, he continues his professional career in the Radiology Department at Konya Beyhekim Training and Research Hospital. Mehmet Sedat DURMAZ completed both his medical education and radiology specialization training at Akdeniz University. He obtained the titles of Associate Professor and Professor at Selçuk University. He received scientific publication awards at Selçuk University for two consecutive years. He holds various significant diplomas and certificates, including the European Diploma in Radiology (EDIR). He continues his profession as a Professor of Radiology at Selçuk University Faculty of Medicine.

    Mehmet Sedat Durmaz (Author)
    Professor, Selcuk University
    https://orcid.org/0000-0002-1340-2477

    • Choi, J.H. and J.Y. Ro, The 2020 WHO classification of tumors of bone: an updated review. Advances in anatomic pathology, 2021. 28(3): p. 119-138.

    • González-Huete, A., et al., Radiographic Evaluation of Bone Tumors. RadioGraphics, 2023. 43(11): p. e230048.

    • Ellen X. Sun, J.S., Jacob C. Mandell, Core Radiology A Visual Approach to Diagnostic Imaging. Vol. 2nd Edition 2021: Cambridge University Press.

    • Augustin, G., A. Antabak, and S. Davila, Retraction notice to “The periosteum. Part 1. Anatomy, histology and molecular biology”[Injury 38 (10)(2007) 1115–1130]. Injury, 2008. 39(7): p. 824.

    • Rana, R.S., J.S. Wu, and R.L. Eisenberg, Periosteal reaction. American Journal of Roentgenology, 2009. 193(4): p. W259-W272.

    • Tokgöz, N., Kemik Tümörlerinde Radyolojik Değerlendirme. 2021.

    • Vartevan, A., C. May, and C.E. Barnes, Pediatric bone imaging: Differentiating benign lesions from malignant. Applied Radiology, 2018. 47(7): p. 8-15.

    • Engel, H., et al. Chondrogenic bone tumors: the importance of imaging characteristics. in RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. 2021. Georg Thieme Verlag KG.

    • Băilescu, I., et al., Imaging Aspects of Enchondromas in Pediatric Patients. Current Health Sciences Journal, 2023. 49(3): p. 457.

    • Crim, J., et al., Can imaging criteria distinguish enchondroma from grade 1 chondrosarcoma? European journal of radiology, 2015. 84(11): p. 2222-2230.

    • Saran, S. and R.H. Phulware, World health organization classification of bone tumors (fifth edition): What a radiologist needs to know? Indian Journal of Musculoskeletal Radiology. 4.

    • Verdegaal, S.H., et al., Incidence, predictive factors, and prognosis of chondrosarcoma in patients with Ollier disease and Maffucci syndrome: an international multicenter study of 161 patients. The oncologist, 2011. 16(12): p. 1771-1779.

    • Herget, G., et al., Insights into Enchondroma, Enchondromatosis and the risk of secondary Chondrosarcoma. Review of the literature with an emphasis on the clinical behaviour, radiology, malignant transformation and the follow up. Neoplasma, 2014. 61(4): p. 365-378.

    • Deckers, C., et al., Midterm MRI follow-up of untreated enchondroma and atypical cartilaginous tumors in the long bones. Cancers, 2021. 13(16): p. 4093.

    • Choi, B.-B., et al., MR differentiation of low-grade chondrosarcoma from enchondroma. Clinical imaging, 2013. 37(3): p. 542-547.

    • Shah, J.N., et al., Pediatric benign bone tumors: what does the radiologist need to know?: pediatric imaging. Radiographics, 2017. 37(3): p. 1001-1002.

    • Mascard, E., A. Gomez-Brouchet, and K. Lambot, Bone cysts: unicameral and aneurysmal bone cyst. Orthopaedics & Traumatology: Surgery & Research, 2015. 101(1): p. S119-S127.

    • Dumitriu, D.I., R. Menten, and P. Clapuyt, Pitfalls in the diagnosis of common benign bone tumours in children. Insights into imaging, 2014. 5: p. 645-655.

    • Restrepo, R., et al., Update on aneurysmal bone cyst: pathophysiology, histology, imaging and treatment. Pediatric radiology, 2022. 52(9): p. 1601-1614.

    • Sasaki, H., et al., Diagnosing and discriminating between primary and secondary aneurysmal bone cysts. Oncology Letters, 2017. 13(4): p. 2290-2296.

    • Josip, E., et al., MRI analysis of simple and aneurysmal bone cysts in the proximal humerus: what actually matters in clinical routine. Skeletal Radiology, 2022. 51(4): p. 819-827.

    • Zishan, U.S., et al., The differentiation between aneurysmal bone cyst and telangiectatic osteosarcoma: a clinical, radiographic and MRI study. Skeletal Radiology, 2020. 49: p. 1375-1386.

    • Shi, Y.-H., et al., Comparison of the Imaging and Pathological Features of Telangiectatic Osteosarcoma and Aneurysmal Bone Cyst of Long Tubular Bones. Iranian Journal of Radiology, 2020. 17(2).

    • Greenspan, A., Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma: clinical, imaging, pathologic, and differential considerations. Skeletal radiology, 1993. 22: p. 485-500.

    • Çilengir, A.H. and Ö. Tosun, Osteojenik Tümörler. 2021.

    • Miller, S.L. and F.A. Hoffer, Malignant and benign bone tumors. Radiologic Clinics of North America, 2001. 39(4): p. 673-699.

    • Hashemi, J., et al., Radiological features of osteoid osteoma: pictorial review. Iranian Journal of radiology, 2011. 8(3): p. 182.

    • Boscainos, P.J., et al., Osteoid osteoma. Orthopedics, 2013. 36(10): p. 792-800.

    • Chai, J.W., et al., Radiologic diagnosis of osteoid osteoma: from simple to challenging findings. Radiographics, 2010. 30(3): p. 737-749.

    • Alabdullrahman, L. and D. Byerly, Osteochondroma.[Updated 2023 Feb 5]. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2024.

    • Bernard, S.A., et al., Improved differentiation of benign osteochondromas from secondary chondrosarcomas with standardized measurement of cartilage cap at CT and MR imaging. Radiology, 2010. 255(3): p. 857-865.

    • Levine, S.M., R.E. Lambiase, and C.N. Petchprapa, Cortical lesions of the tibia: characteristic appearances at conventional radiography. Radiographics, 2003. 23(1): p. 157-177.

    • Jee, W.-H., et al., Nonossifying fibroma: characteristics at MR imaging with pathologic correlation. Radiology, 1998. 209(1): p. 197-202.

    • Anzidei, M., et al., Non-ossifying fibroma of tibia: X-ray, CT and MR evaluation. Eurorad, 2005.

    • Kilborn, T., J. Teh, and T. Goodman, Paediatric manifestations of Langerhans cell histiocytosis: a review of the clinical and radiological findings. Clinical radiology, 2003. 58(4): p. 269-278.

    • Çelik, C., H.S. Bircan, and Y. Uyar, LANGERHANS CELL HISTIOCYTOSIS WITH BILATERAL TEMPORAL BONE INVOLVEMENT IN AN ADULT.

    • Kapukaya, A., et al., Langerhans-hücreli histiyositoz. TOTBID Dergisi, 2013. 12(6): p. 547-56.

    • Gargan, M.-L., et al., Langerhans cell histiocytosis in children under 12 months of age: The spectrum of imaging and clinical findings: Experience in an Irish tertiary referral centre. European Journal of Radiology, 2021. 134: p. 109375.

    • Zaveri, J., et al., More than just Langerhans cell histiocytosis: a radiologic review of histiocytic disorders. Radiographics, 2014. 34(7): p. 2008-2024.

    • McCarville, B., The child with bone pain: Malignancies and mimickers. Cancer imaging : the official publication of the International Cancer Imaging Society, 2009. 9 Spec No A: p. S115-21.

    • Kim, J.-E., et al., Langerhans cell histiocytosis of the jaw, a mimicker of osteomyelitis on CT and MR images: A retrospective analysis. Medicine, 2019. 98(27): p. e16331.

    • Arkun, R. and İ. Tamsel, Kondrojenik Tümörler. 2021.

    • Alkadumi, M., et al., Chondroblastoma of the knee in a teenager. Radiology Case Reports, 2021. 16(12): p. 3729-3733.

    • Er, T., Kondroblastom ve kondromiksoid fibrom: Klinik, radyolojik, histolojik özellikleri ve tedavi prensipleri.

    • Cappelle, S., S. Pans, and R. Sciot, Imaging features of chondromyxoid fibroma: report of 15 cases and literature review. The British Journal of Radiology, 2016. 89(1064): p. 20160088.

    • Kay, M., et al., Cortical desmoid of the humerus: radiographic and MRI correlation. Skeletal Radiology, 2017. 46: p. 1011-1015.

    • Kontogeorgakos, V.A., et al., Cortical desmoid and the four clinical scenarios. Archives of orthopaedic and trauma surgery, 2009. 129: p. 779-785.

    • Pennes, D., E. Braunstein, and G. Glazer, Computed tomography of cortical desmoid. Skeletal radiology, 1984. 12: p. 40-42.

    • Jee, W., et al., Fibrous dysplasia: MR imaging characteristics with radiopathologic correlation. AJR. American journal of roentgenology, 1996. 167(6): p. 1523-1527.

    • Qu, N., et al., Malignant transformation in monostotic fibrous dysplasia: clinical features, imaging features, outcomes in 10 patients, and review. Medicine, 2015. 94(3): p. e369.

    • Torrico-Acha, X. and J.M. Llaguno-Rubio, New technologies in oral radiology as a diagnostic aid for monostotic fibrous dysplasia: a review. Revista Científica Odontológica, 2021. 9(4).

    • Kushchayeva, Y.S., et al., Fibrous dysplasia for radiologists: beyond ground glass bone matrix. Insights into imaging, 2018. 9: p. 1035-1056.

    • Lahlou, I., et al., Fibrous Dysplasia Polyostotic: When Radiology Clarifies the Diagnosis. Global Pediatric Health, 2024. 11: p. 2333794X241251746.

    • Zarghooni, K., et al., The Diagnosis and Treatment of Osteosarcoma and Ewing’s Sarcoma in Children and Adolescents. Deutsches Ärzteblatt International, 2023. 120(24): p. 405.

    • Sivrioglu, A.K., S. Aribal, and H. Onder, Secondary multifocal osteosarcoma developing on the background of bone infarct. Case Reports, 2017. 2017: p. bcr-2017-220293.

    • Suresh, S. and A. Saifuddin, Radiological appearances of appendicular osteosarcoma: a comprehensive pictorial review. Clinical radiology, 2007. 62(4): p. 314-323.

    • Klein, M.J. and G.P. Siegal, Osteosarcoma: anatomic and histologic variants. American journal of clinical pathology, 2006. 125(4): p. 555-581.

    • Bacci, G., et al., Treatment and prognosis for synchronous multifocal osteosarcoma in 42 patients. The Journal of Bone & Joint Surgery British Volume, 2006. 88(8): p. 1071-1075.

    • Kundu, Z.S., Classification, imaging, biopsy and staging of osteosarcoma. Indian journal of orthopaedics, 2014. 48(3): p. 238-246.

    • Nguyen, J.C., et al., Pediatric osteosarcoma: correlation of imaging findings with histopathologic features, treatment, and outcome. Radiographics, 2022. 42(4): p. 1196-1213.

    • Jin, Q., et al., Clinical Significance of the Radiological Relationship between the Tumor and the main blood vessels in Enneking IIB Osteosarcoma of the extremities. Journal of Cancer, 2020. 11(11): p. 3235.

    • Navarro, O.M., et al., Multiparametric MRI evaluation of bone sarcomas in children. Insights into Imaging, 2022. 13(1).

    • Setiawati, R., et al., Characteristic of apparent diffusion coefficient and time intensity curve analysis of dynamic contrast enhanced MRI in osteosarcoma histopathologic subtypes. International Journal of Medical Sciences, 2023. 20(2): p. 163.

    • Murphey, M.D., et al., From the radiologic pathology archives: Ewing sarcoma family of tumors: radiologicpathologic correlation. Radiographics, 2013. 33(3): p. 803-831.

    • Yarmish, G., et al., Imaging characteristics of primary osteosarcoma: nonconventional subtypes. Radiographics, 2010. 30(6): p. 1653-1672.

    • Kaste, S.C., et al., Pediatric surface osteosarcoma: clinical, pathologic, and radiologic features. Pediatric blood & cancer, 2006. 47(2): p. 152-162.

    • Hang, J.-F. and P.C.-H. Chen, Parosteal osteosarcoma. Archives of Pathology and Laboratory Medicine, 2014. 138(5): p. 694-699.

    • Łuczyńska, E., et al., Myositis ossificans mimicking sarcoma, the importance of diagnostic imaging–case report. Polish journal of radiology, 2014. 79: p. 228.

    • Murphey, M.D., et al., Imaging of periosteal osteosarcoma: radiologic-pathologic comparison. Radiology, 2004. 233(1): p. 129-138.

    • Kumar, V.S., N. Barwar, and S.A. Khan, Surface osteosarcomas: Diagnosis, treatment and outcome. Indian journal of orthopaedics, 2014. 48: p. 255-261.

    • Okada, K., et al., High grade surface osteosarcoma: a clinicopathologic study of 46 cases. Cancer, 1999. 85(5): p. 1044-1054.

    • Liu, J.-j., et al., Telangiectatic osteosarcoma: a review of literature. OncoTargets and therapy, 2013: p. 593602.

    • Murphey, M.D., et al., Telangiectatic osteosarcoma: radiologic-pathologic comparison. Radiology, 2003. 229(2): p. 545-553.

    • Vasiliadis, H.S., et al., Low-grade central osteosarcoma of distal femur, resembling fibrous dysplasia. World journal of orthopedics, 2013. 4(4): p. 327.

    • Andresen, K.J., et al., Imaging features of low-grade central osteosarcoma of the long bones and pelvis. Skeletal radiology, 2004. 33: p. 373-379.

    • Bonar, S.F., Central low-grade osteosarcoma: a diagnostic challenge. Skeletal radiology, 2012. 41(4): p. 365367.

    • Zhong, J., et al., Clarifying prognostic factors of small cell osteosarcoma: a pooled analysis of 20 cases and the literature. Journal of bone oncology, 2020. 24: p. 100305.

    • Edeiken, J., et al., Small-cell osteosarcoma. Skeletal radiology, 1987. 16: p. 621-628.

    • Murphey, M.D., et al., From the archives of the AFIP: imaging of primary chondrosarcoma: radiologicpathologic correlation. Radiographics, 2003. 23(5): p. 1245-1278.

    • Kim, J.-H. and S.K. Lee, Classification of chondrosarcoma: from characteristic to challenging imaging findings. Cancers, 2023. 15(6): p. 1703.

    • Carter, J.M. and C.Y. Inwards, Conventional chondrosarcoma: old controversies and new insights. Diagnostic Histopathology, 2014. 20(5): p. 181-189.

    • Sharif, B., D. Lindsay, and A. Saifuddin, The role of imaging in differentiating low-grade and high-grade central chondral tumours. European journal of radiology, 2021. 137: p. 109579.

    • Liu, C., et al., Dedifferentiated chondrosarcoma: radiological features, prognostic factors and survival statistics in 23 patients. PLoS One, 2017. 12(3): p. e0173665.

    • Littrell, L.A., et al., Radiographic, CT, and MR imaging features of dedifferentiated chondrosarcomas: a retrospective review of 174 de novo cases. Radiographics, 2004. 24(5): p. 1397-1409.

    • Ghafoor, S., et al., Mesenchymal chondrosarcoma: imaging features and clinical findings. Skeletal radiology, 2021. 50: p. 333-341.

    • Chaabane, S., et al., Periosteal chondrosarcoma. American Journal of Roentgenology, 2009. 192(1): p. W1W6.

    • Collins, M.S., et al., Clear cell chondrosarcoma: radiographic, computed tomographic, and magnetic resonance findings in 34 patients with pathologic correlation. Skeletal radiology, 2003. 32: p. 687-694.

    • Klein, A., et al., Clear cell chondrosarcoma is an underestimated tumor: Report of 7 cases and meta-analysis of the literature. Journal of bone oncology, 2019. 19: p. 100267.

    • Elojeimy, S., et al., Clear-cell chondrosarcoma of the humerus. Radiology case reports, 2013. 8(2): p. 848.

    • Yazol, M. and Ö. Boyunağa, Kemigin Indiferansiye Kucuk Yuvarlak Hucreli Sarkomlari ve Radyolojik Bulgulari. Türk Radyoloji Seminerleri, 2021. 9(1).

    • Zöllner, S.K., et al., Ewing sarcoma—diagnosis, treatment, clinical challenges and future perspectives. Journal of clinical medicine, 2021. 10(8): p. 1685.

    • Alexander, A., et al., Extraosseous ewing’s sarcoma: pictorial review of imaging findings, differential diagnosis, and pathologic correlation. Indian Journal of Radiology and Imaging, 2021. 31(01): p. 203-209.

    • Shashaa, M.N., et al., Ewing’s sarcoma in scapula, epidemiology, clinical manifestation, diagnosis and treatment: A literature review. Annals of Medicine and Surgery, 2022. 77: p. 103617.

    • Costa, F.M., E.C. Ferreira, and E.M. Vianna, Diffusion-weighted magnetic resonance imaging for the evaluation of musculoskeletal tumors. Magnetic Resonance Imaging Clinics, 2011. 19(1): p. 159-180.

    • Parlak, Ş., et al., Diffusion-weighted imaging for the differentiation of Ewing sarcoma from osteosarcoma. Skeletal Radiology, 2021. 50: p. 2023-2030.

    • Müller, A., et al., Primary bone lymphoma: Clinical presentation and therapeutic considerations. Journal of Bone Oncology, 2020. 25: p. 100326.

    • Krishnan, A., et al., Primary bone lymphoma: radiographic–MR imaging correlation. Radiographics, 2003. 23(6): p. 1371-1383.

    • Stefanini, F.S., et al., Primary bone lymphoma: pictorial essay. Radiologia Brasileira, 2020. 53: p. 419-423.

    • Fox, M.G., et al., Epiphyseal presentation of non-Hodgkin’s lymphoma of bone in two pediatric patients—one with primary lymphoma of bone. Skeletal radiology, 2015. 44: p. 587-595.

    Share This Chapter!