Effects of Turmeric in Neurological Diseases
Abdurrahman Abakay (Author)
Release Date: 2024-06-10
Zingiberaceae is a large and diverse family of plants commonly known as the “Gingeraceae”. The Zingiberaceae family is a plant family known for its plant diversity, economic importance, and potential for medicinal use. Turmeric is a perennial, rhizomatous, herbaceous plant from the ginger family, containing the compound curcumin and offering many health benefits Cardamom, turmeric, [...]
Media Type
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Neurological Diseases and Treatments in Terms of Biochemistry |
First Page | 111 |
Last Page | 124 |
DOI | https://doi.org/10.69860/nobel.9786053359357.7 |
Page Count | 14 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Abdurrahman Abakay (Author)
PhD, Assoc. Prof. Dr., Private Diyarlife Hospital
https://orcid.org/0009-0005-2283-2777
3The author is a pulmonologist. The author’s special interest is functional medicine and functional foods.
Ballester P, Cerdá B, Arcusa R, García-Muñoz AM, Marhuenda J, Zafrilla P. Antioxidant Activity in Extracts from Zingiberaceae Family: Cardamom, Turmeric, and Ginger. Molecules. 2023;28(10):4024.
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017, 174, 1325–1348.
Kocaadam, B.; ¸Sanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895.
Nair, A.; Amalraj, A.; Jacob, J.; Kunnumakkara, A.B.; Gopi, S. Non-Curcuminoids from Turmeric and Their Potential in CancerTherapy and Anticancer Drug Delivery Formulations. Biomolecules 2019, 9, 13.
Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities:Identification of novel components of turmeric. Mol. Nutr. Food Res. 2013, 57, 1529–1542.
Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration,aging, oxidative and nitrosative stress: A review. Neuroscience 2019, 406, 1–21.
Garza, G.R.C.; Luévano, J.H.E.; Rodríguez, A.F.B.; Montes, A.C.; Hernández, R.A.P.; Delgado, A.J.M.; Villarreal, S.M.L.; Rodríguez,J.R.; Casas, R.M.S.; Velázquez, U.C.; et al. Benefits of Cardamom (Elettaria cardamomum (L.) Maton) and Turmeric (Curcuma longa L.)Extracts for Their Applications as Natural Anti-Inflammatory Adjuvants. Plants 2021, 10, 1908.
Zhang, H.A.; Kitts, D.D. Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetesand cardiovascular diseases. Mol. Cell. Biochem. 2021, 476, 3785–3814.
Ming, T.; Tao, Q.; Tang, S.; Zhao, H.; Yang, H.; Liu, M.; Ren, S.; Xu, H. Curcumin: An epigenetic regulator and its application incancer. Biomed. Pharmacother. 2022, 156, 113956.
Gupta, N.; Verma, K.; Nalla, S.; Kulshreshtha, A.; Lall, R.; Prasad, S. Free Radicals as a Double-Edged Sword: The CancerPreventive and Therapeutic Roles of Curcumin. Molecules 2020, 25, 5390.
Jabczyk, M.; Nowak, J.; Hudzik, B.; Zubelewicz-Szkodzi´ nska, B. Curcumin in Metabolic Health and Disease. Nutrients 2021,13, 4440.
Jiang, T.A. Health Benefits of Culinary Herbs and Spices. J. AOAC Int. 2019, 102, 395–411.
Li, R.; Wang, Y.; Liu, Y.; Chen, Q.; Fu, W.; Wang, H.; Cai, H.; Peng, W.; Zhang, X. Curcumin Inhibits Transforming GrowthFactor-1-Induced EMT via PPAR Pathway, Not Smad Pathway in Renal Tubular Epithelial Cells. PLoS ONE 2013, 8, e58848.
Zhang, S.; Dimango, E.; Zhu, Y.; Saroya, T.K.; Emala, C.W.; Sang, S. Pharmacokinetics of Gingerols, Shogaols, and TheirMetabolites in Asthma Patients. J. Agric. Food Chem. 2022, 70, 9674–9683.
Racz, L.Z.; Racz, C.P.; Pop, L.C.; Tomoaia, G.; Mocanu, A.; Barbu, I.; Sárközi, M.; Roman, I.; Avram, A.; Tomoaia-Cotisel, M.; et al. Strategies for Improving Bioavailability, Bioactivity, and Physical-Chemical Behavior of Curcumin. Molecules 2022, 27, 6854.
Bi, X.; Yuan, Z.; Qu, B.; Zhou, H.; Liu, Z.; Xie, Y. Piperine enhances the bioavailability of silybin via inhibition of efflux transportersBCRP and MRP2. Phytomedicine 2019, 54, 98–108.
Sohn, S.-I.; Priya, A.; Balasubramaniam, B.; Muthuramalingam, P.; Sivasankar, C.; Selvaraj, A.; Valliammai, A.; Jothi, R.; Pandian,S. Biomedical Applications and Bioavailability of Curcumin-An Updated Overview. Pharmaceutics 2021, 13, 2102.
Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. FoodSci. Nutr. 2005, 45, 287–306.
Dˇ uracˇková, Z. Some current insights into oxidative stress. Physiol. Res. 2010, 59, 459–469.
Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748.
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Dofor Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797.
Del Río, L.A. ROS and RNS in plant physiology: An overview. J. Exp. Bot. 2015, 66, 2827–2837.
Giles, G.I.; Tasker, K.M.; Jacob, C. Hypothesis: The role of reactive sulfur species in oxidative stress. Free Radic. Biol. Med. 2001, 31,1279–1283.
DeLeon, E.R.; Gao, Y.; Huang, E.; Arif, M.; Arora, N.; Divietro, A.; Patel, S.; Olson, K.R. A case of mistaken identity: Are reactive oxygen species actually reactive sulfide species? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R549–R560.
Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014,94, 739–777.
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010, 4, 118–126.
Alkadi, H. A Review on Free Radicals and Antioxidants. Infect. Disord. Drug Targets 2020, 20, 16–26.
Von Dentz, K.E.; Silva, B.S.; Queiroz, E.A.I.F.; Bomfim, G.F.; Nascimento, A.F.; Sugizaki, M.M.; Luvizotto, R.A.M. Hibiscussabdariffa ethanolic extract modulates adipokine levels, decreases visceral fat and improves glycemic profile in high-fat/sugardiet-induced obese rats. Nutr. Food Sci. 2021, 51, 222–233.
Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants:The interplay. Biomed. Res. Int. 2014, 2014, 761264.
Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425.
Tan, B.L.; Norhaizan, M.E.; Liew, W.P.P.; Rahman, H.S. Antioxidant and oxidative stress: A mutual interplay in age-relateddiseases. Front. Pharmacol. 2018, 9, 1162.
Espinosa-Diez, C.; Miguel, V.; Mennerich, D.; Kietzmann, T.; Sánchez-Pérez, P.; Cadenas, S.; Lamas, S. Antioxidant responses andcellular adjustments to oxidative stress. Redox Biol. 2015, 6, 183–197.
Jakubczyk, K.; Druz˙ga, A.; Katarzyna, J.; Skonieczna-Z˙ ydecka, K. Antioxidant Potential of Curcumin-A Meta-Analysis ofRandomized Clinical Trials. Antioxidants 2020, 9, 1092.
Alizadeh, M.; Kheirouri, S. Curcumin reduces malondialdehyde and improves antioxidants in humans with diseased conditions:A comprehensive meta-analysis of randomized controlled trials. BioMedicine 2019, 9, 23.
Lai, L.; Yan, L.; Gao, S.; Hu, C.L.; Ge, H.; Davidow, A.; Park, M.; Bravo, C.; Iwatsubo, K.; Ishikawa, Y.; et al. Type 5 adenylyl cyclaseincreases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway.Circulation 2013, 127, 1692–1701.
Qiu, X.; Brown, K.; Hirschey, M.D.; Verdin, E.; Chen, D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2activation. Cell Metab. 2010, 12, 662–667.
Dehzad, M.J.; Ghalandari, H.; Nouri, M.; Askarpour, M. Antioxidant and anti-inflammatory effects of curcumin/turmericsupplementation in adults: A GRADE-assessed systematic review and dose–response meta-analysis of randomized controlledtrials. Cytokine 2023, 164, 156144.
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Majeed, M.; Sahebkar, A. Antioxidant and anti-inflammatory effects ofcurcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated metaanalysis.Clin. Nutr. 2015, 34, 1101–1108.
Halliwell, B. Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging 2001, 18, 685–716.
Spagnuolo, C.; Napolitano, M.; Tedesco, I.; Moccia, S.; Milito, A.; Russo, G.L. Neuroprotective Role of Natural Polyphenols. Curr.Top. Med. Chem. 2016, 16, 1943–1950.
Tang, M.; Taghibiglou, C. The Mechanisms of Action of Curcumin in Alzheimer’s Disease. J. Alzheimers. Dis. 2017, 58, 1003–1016.
Belwal, T.; Nabavi, S.M.; Nabavi, S.F.; Dehpour, A.R.; Shirooie, S. Naturally Occurring Chemicals against Alzheimer’s Disease;Academic Press: Cambridge, MA, USA, 2020; ISBN 0128192135.
Angelopoulou, E.; Paudel, Y.N.; Papageorgiou, S.G.; Piperi, C. Elucidating the Beneficial Effects of Ginger (Zingiber officinale Roscoe) in Parkinson’s Disease. ACS Pharmacol. Transl. Sci. 2022, 5, 838–848.
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; et al.Protective Effects of Indian Spice Curcumin Against Amyloid in Alzheimer’s Disease. J. Alzheimers. Dis. 2018, 61, 843–866.
Moon, M.; Kim, H.G.; Choi, J.G.; Oh, H.; Lee, P.K.; Ha, S.K.; Kim, S.Y.; Park, Y.; Huh, Y.; Oh, M.S. 6-Shogaol, an active constituentof ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochem. Biophys. Res. Commun.2014, 449, 8–13.
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |