Interconnection Between Antibiotic Resistance and Climate Change
Elif Ozlem Arslan Aydogdu (Author), Gulnihan Selim (Author)
Release Date: 2024-05-31
Antibiotic resistance is one of nowdays biggest public health problems. Because of their adaptation abilities, bacteria are gaining resistance against the antibiotics. When a bacterium resistance to antibiotic, it also cause resistance in other bacteria in its environment. Climate change causes antibacterial resistance to increase. Both increasing air temperatures and natural disasters resulting from climate [...]
Media Type
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Ecological Dynamics in the Face of Climate Change |
First Page | 43 |
Last Page | 55 |
DOI | https://doi.org/10.69860/nobel.9786053359258.3 |
Page Count | 13 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Elif Ozlem Arslan Aydogdu (Author)
Assistant Professor, Istanbul Universty
https://orcid.org/0000-0003-1294-7376
3Elif Özlem Arslan Aydoğdu is a Assistant Professor in the Department of Fundamental and Industrial Microbiology at Istanbul University. She obtained her doctorate at Istanbul University in 2012, focusing on antimicrobial agents. Her research interests include bioremediation, antimicrobial activities of bacteria, microbial ecology,immunology and biotechnology.
Gulnihan Selim (Author)
Research Assistant, Istanbul Universty
https://orcid.org/0000-0002-0644-0061
3Gülnihan Selim is a Research Assistant in the Fundamental and Industrial Microbiology at Istanbul University. She completed her MSc at the same department about antibacterial activity of Actinomycetes bacteria. She is a PhD student in the same department. Her research interests include marine microbiology, antimicrobial activity of microorganisms, microbial ecology and biotechnology.
Aghdassi, S. J. S., Schwab, F., Hoffmann, P., & Gastmeier, P. (2019). The Association of Climatic Factors with rates of surgical site infections: 17 years ‘data from hospital infection surveillance. Deutsches Ärzteblatt International, 116(31-32), 529.
Aik, J., Heywood, A. E., Newall, A. T., Ng, L. C., Kirk, M. D., & Turner, R. (2018). Climate variability and salmonellosis in Singapore–A time series analysis. Science of the total environment, 639, 1261-1267.
Anyamba, A., Chretien, J. P., Britch, S. C., Soebiyanto, R. P., Small, J. L., & Jepsen, R. Global disease outbreaks associated with the 2015–2016 El Niño event. Sci Rep. 2019; 9 (1): 1930–.
Blair, J. M. (2018). A climate for antibiotic resistance. Nature Climate Change, 8(6), 460-461.
Burnham, J. P. (2021). Climate change and antibiotic resistance: a deadly combination. Therapeutic Advances in Infectious Disease, 8, 2049936121991374.
Cruz-Loya, M., Kang, T. M., Lozano, N. A., Watanabe, R., Tekin, E., Damoiseaux, R., ... & Yeh, P. J. (2019). Stressor interaction networks suggest antibiotic resistance co-opted from stress responses to temperature. The ISME journal, 13(1), 12-23.
Dominey-Howes, D., Bajorek, B., Michael, C. A., Betteridge, B., Iredell, J., & Labbate, M. (2015). Applying the emergency risk management process to tackle the crisis of antibiotic resistance. Frontiers in Microbiology, 6, 129597.
El-Far, A., Yousry, N., Abouelmagd, F., Elsheikh, M. E., & El Said, M. (2024). Influence of climate change on emerging pathogens and human immunity. The Egyptian Journal of Immunology, 31(2), 71-86.
Fouladkhah, A. C., Thompson, B., & Camp, J. S. (2020). The threat of antibiotic resistance in changing climate. Microorganisms, 8(5), 748.
Gowrisankar, G., Chelliah, R., Ramakrishnan, S. R., Elumalai, V., Dhanamadhavan, S., Brindha, K., ... & Elango, L. (2017). Chemical, microbial and antibiotic susceptibility analyses of groundwater after a major flood event in Chennai. Scientific data, 4(1), 1-13.
Kaba, H. E., Kuhlmann, E., & Scheithauer, S. (2020). Thinking outside the box: Association of antimicrobial resistance with climate warming in Europe–A 30 country observational study. International Journal of Hygiene and Environmental Health, 223(1), 151-158.
Khalid, M., Liu, X., Zheng, B., Su, L., Kotze, D. J., Setälä, H., ... & Hui, N. (2023). Distinct climatic regions drive antibiotic resistance genes dynamics across public parks and pristine soil ecosystems. Journal of Cleaner Production, 409, 137275.
Khasnis, A. A., & Nettleman, M. D. (2005). Global warming and infectious disease. Archives of medical research, 36(6), 689-696.
Li, Z., Sun, A., Liu, X., Chen, Q. L., Bi, L., Ren, P. X., ... & Yang, Y. (2022). Climate warming increases the proportions of specific antibiotic resistance genes in natural soil ecosystems. Journal of Hazardous Materials, 430, 128442.
Li, W., Liu, C., Ho, H. C., Shi, L., Zeng, Y., Yang, X., ... & Yang, L. (2023). Association between antibiotic resistance and increasing ambient temperature in China: An ecological study with nationwide panel data. The Lancet Regional Health–Western Pacific, 30.
Lou, Z., Xu, H., Xia, L., Lin, W., Dai, Z., & Wang, X. (2023). Enhanced freeze-thaw cycles facilitate the antibiotic resistance proliferation and dissemination risk under global climate change. Process Safety and Environmental Protection, 175, 119-128.
MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6), 510-514.
Magnano San Lio, R., Favara, G., Maugeri, A., Barchitta, M., & Agodi, A. (2023). How antimicrobial resistance is linked to climate change: an overview of two intertwined global challenges. International journal of environmental research and public health, 20(3), 1681.
McGough, S. F., MacFadden, D. R., Hattab, M. W., Mølbak, K., & Santillana, M. (2020). Rates of increase of antibiotic resistance and ambient temperature in Europe: a cross-national analysis of 28 countries between 2000 and 2016. Eurosurveillance, 25(45), 1900414.
McMahon, M. A. S., Xu, J., Moore, J. E., Blair, I. S., & McDowell, D. A. (2007). Environmental stress and antibiotic resistance in food-related pathogens. Applied and environmental microbiology, 73(1), 211-217.
Mira, P., Lozano‐Huntelman, N., Johnson, A., Savage, V. M., & Yeh, P. (2022). Evolution of antibiotic resistance impacts optimal temperature and growth rate in Escherichia coli and Staphylococcus epidermidis. Journal of Applied Microbiology, 133(4), 2655-2667.
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... & Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The lancet, 399(10325), 629-655.
Pärnänen, K. M., Narciso-da-Rocha, C., Kneis, D., Berendonk, T. U., Cacace, D., Do, T. T., ... & Manaia, C. M. (2019). Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science advances, 5(3), eaau9124.
Pepi, M., & Focardi, S. (2021). Antibiotic-resistant bacteria in aquaculture and climate change: A challenge for health in the Mediterranean area. International journal of environmental research and public health, 18(11), 5723.
Revich, B. A., & Podolnaya, M. A. (2011). Thawing of permafrost may disturb historic cattle burial grounds in East Siberia. Global health action, 4(1), 8482.
Rodríguez-Verdugo, A., Lozano-Huntelman, N., Cruz-Loya, M., Savage, V., & Yeh, P. (2020). Compounding effects of climate warming and antibiotic resistance. IScience, 23(4).
Semenza, J. C., Suk, J. E., Estevez, V., Ebi, K. L., & Lindgren, E. (2012). Mapping climate change vulnerabilities to infectious diseases in Europe. Environmental health perspectives, 120(3), 385-392.
Smith, D. F., & Casadevall, A. (2022). Disaster microbiology—a new field of study. MBio, 13(4), e01680-22.
Suhail Hamdani, S., Ahmad Bhat, B., & Tariq, L. (2020). Antibiotic resistance: The future disaster [J]. International Journal for Research in Applied Sciences and Biotechnology, 7(4), 133-145.
WHO, Antimicrobial resistance, 2023 https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed 26.06.2024)
WHO. Global Action Plan on Antimicrobial Resistance. Geneva: WHO; 2015. http://apps.who.int/iris/bitstream/ handle/10665/193736/9789241509763_eng.pdf?sequence=1 (accessed 04.05.2024)
Yang, L., Wang, K., Li, H., Denstedt, J. D., & Cadieux, P. A. (2014). The influence of urinary pH on antibiotic efficacy against bacterial uropathogens. Urology, 84(3), 731-e1..
Zhu, Y. G., Zhao, Y., Zhu, D., Gillings, M., Penuelas, J., Ok, Y. S., ... & Banwart, S. (2019). Soil biota, antimicrobial resistance and planetary health. Environment International, 131, 105059.
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |