Release Date: 2023-09-14

Antidiabetic Phytotherapy

Harun Alp (Author)

Release Date: 2023-09-14

Phytotherapy, or the use of plant-based substances for medicinal purposes, has gained attention in the management of diabetes mellitus (DM) due to its potential benefits and fewer side effects compared to conventional medications. Various plant extracts and herbal remedies have been studied for their antidiabetic properties, with mechanisms including enhancement of insulin secretion, improvement of [...]

Media Type
  • PDF

Buy from

Price may vary by retailers

Work TypeBook Chapter
Published inCurrent Perspective on Diabetes Mellitus in Clinical Sciences
First Page437
Last Page462
DOIhttps://doi.org/10.69860/nobel.9786053359111.40
ISBN978-605-335-911-1 (PDF)
LanguageENG
Page Count26
Copyright HolderNobel Tıp Kitabevleri
Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
Phytotherapy, or the use of plant-based substances for medicinal purposes, has gained attention in the management of diabetes mellitus (DM) due to its potential benefits and fewer side effects compared to conventional medications. Various plant extracts and herbal remedies have been studied for their antidiabetic properties, with mechanisms including enhancement of insulin secretion, improvement of insulin sensitivity, inhibition of carbohydrate digestion and absorption, and antioxidant effects. Commonly studied plants include bitter melon (Momordica charantia), fenugreek (Trigonella foenum-graecum), cinnamon (Cinnamomum verum), and ginseng (Panax ginseng). Bitter melon, for instance, contains compounds that mimic insulin and may help regulate blood sugar levels. Fenugreek seeds have shown promise in reducing blood glucose levels and improving insulin sensitivity. Cinnamon extracts have been reported to lower fasting blood sugar levels by improving insulin signaling and glucose transport.While phytotherapy offers potential benefits, it’s crucial to note that scientific evidence supporting their efficacy and safety is still evolving. Standardization of dosage, potential interactions with medications, and variability in bioactive compounds among plant sources are important considerations. Therefore, individuals considering phytotherapy for diabetes management should consult healthcare professionals to ensure safe and effective integration with conventional treatments and monitoring of blood glucose levels.
  • Alwan A, editor. Global Status Report on Noncommunicable Diseases 2010. Geneva, Switzerland: World Health Organization; 2011.

  • Lal VK, Gupta PP, Tripathi P, Pandey A. Interaction of aqueous extract of Trigonella foenum-graecum seeds with glibenclamide in streptozotocin induced diabetic rats. Am J Pharm Toxicol 2011; 6: 102–106.

  • Rai A, Eapen C, Prasanth VG. Interaction of herbs and glibenclamide: a review. ISRN Pharmacol 2012; 2012: 1–3.

  • Hulya Parildar,1 Rustu Serter,2 Erdem Yesilada3. Diabetes mellitus and phytotherapy in Turkey. J Pak Med Assoc. Vol. 61, No. 11, November 2011.

  • Capasso F, Gaginella TS, Grandolini G, Izzo AA. “Phytotherapy”. Berlin: Springer 2003; pp 8.

  • American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2006; 29: S4-42.

  • Paria Azimi1,2, Reza Ghiasvand1,2, Awat Feizi1,2, Mitra Hariri1,2, Behnoud Abbasi1,2. Effects of Cinnamon, Cardamom, Saffron, and Ginger Consumption on Markers of Glycemic Control, Lipid Profi le, Oxidative Stress, and Infl ammation in Type 2 Diabetes Patients. Rev Diabet Stud (2014/15) 11:258-266.

  • V, Abbas AK, Fausto N, Aster JC. Robbins and Cotran pathologic basis of disease. 2009, chapter 1, pp 30.

  • Meetoo D, Mcgovern P, Safadi R. An epidemiological overview of diabetes across the world. Br J Nurs 2007. 16(16):1002-1007.

  • Montonen J, Knekt P, Järvinen R, Reunanen A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 2004. 27(2):362-366.

  • Liu J, Zhang M, Wang W, Grimsgaard S. Chinese herbal medicines for type 2 diabetes mellitus. Cochrane Database Syst Rev 2004. 3:CD003642.

  • Jarvill-Taylor KJ, Anderson RA, Gaves DJ. A hydroxy-chalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. J Am Coll Nutr 2001; 20: 327-36.

  • Cao H, Polansky MM, Anderson RA. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Arch Biochem Biophys 2007; 459: 214-22.

  • Vanschoonbeek K, Thomassen BJ, Senden JM, Wodzig WK, van Loon LJ. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J Nutr 2006. 136(4):977- 980.

  • Qin B, Panickar KS, Anderson RA. Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J Diabetes Sci Technol 2010. 4(3):685-693.

  • Tung YT, Chua MT, Wang SY, Chang ST. Antiinfl ammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour Technol 2008. 99(9):3908- 3913.

  • Khan A, Safdar M, Khan MMA, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003. 26(12):3215-3218.

  • Dhuley J. Anti-oxidant effects of cinnamon (Cinnamomum verum) bark and greater cardamom (Amomum subulatum) seeds in rats fed high fat diet. Indian J Exp Biol 1999. 37(4):238-242.

  • Jamal A, Javed K, Aslam M, Jafri M. Gastroprotective effect of cardamom, Elettaria cardamomum Maton. fruits in rats. J Ethnopharmacol 2006. 103(2):149-153.

  • Majdalawieh AF, Carr RI. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J Med Food 2010. 13(2):371-381.

  • Paolo Governa 1,2,3,* ID, Giulia Baini 1,2, Vittoria Borgonetti 1,2, Giulia Cettolin 1,2, Daniela Giachetti 1,2, Anna Rosa Magnano 1,2, Elisabetta Miraldi 1,2 and Marco Biagi 1. Phytotherapy in the Management of Diabetes: A Review.

  • World Health Organization. WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 1999; Volume 1.

  • Farag, M.A.; Ali, S.E.; Hodaya, R.H.; El-Seedi, H.R.; Sultani, H.N.; Laub, A.; Eissa, T.F.; Abou-Zaid, F.O.F.; Wessjohann, L.A. Phytochemical profi les and antimicrobial activities of Allium cepa Red cv. and A. sativum subjected to different drying methods: A comparative MS-based metabolomics. Molecules 2017, 22, 761.

  • Augusti, K.T. Studies on the effects of a hypoglycemic principle from Allium Cepa Linn. Indian J. Med. Res. 1973, 61, 1066–1071.

  • Gupta, R.K.; Gupta, S.; Samuel, K.C. Blood sugar lowering effect of various fractions of onion. Indian J. Exp. Biol. 1977, 15, 313–314.

  • Jain, R.C.; Vyas, C.R. Letter: Hypoglycaemia action of onion on rabbits. Br. Med. J. 1974, 2, 730.

  • Ogunmodede, O.S.; Saalu, L.C.; Ogunlade, B.; Akunna, G.G.; Oyewopo, A.O. An Evaluation of the Hypoglycemic, Antioxidant and Hepatoprotective Potentials of Onion (Allium cepa L.) on Alloxan-induced Diabetic Rabbits. Int. J. Pharmacol. 2012, 8, 21–29.

  • El-Demerdash, F.M.; Yousef, M.I.; El-Naga, N.I.A. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem. Toxicol. 2005, 43, 57–63.

  • Azuma, K.; Minami, Y.; Ippoushi, K.; Terao, J. Lowering effects of onion intake on oxidative stress biomarkers in streptozotocin-induced diabetic rats. J. Clin. Biochem. Nutr. 2007, 40, 131–140.

  • El-Soud, N.A.; Khalil, M. Antioxidative effects of Allium Cepa essential oil in streptozotocin induced diabetic rats. Maced. J. Med. Sci. 2010, 3, 344–351.

  • Akash, M.S.H.; Rehman, K.; Chen, S. Spice plant Allium cepa: Dietary supplement for treatment of type 2 diabetes mellitus. Nutrition 2014, 30, 1128–1137.

  • Kim, S.-H.; Jo, S.-H.; Kwon, Y.-I.; Hwang, J.-K. Effects of Onion (Allium cepa L.) Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model. Int. J. Mol. Sci. 2011, 12, 3757–3769.

  • Gautam, S.; Pal, S.; Maurya, R.; Srivastava, A.K. Ethanolic extract of Allium cepa stimulates glucose transporter typ 4-mediated glucose uptake by the activation of insulin signaling. Planta Med. 2015, 81, 208–214.

  • Kumari, K.; Augusti, K.T. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian J. Exp. Biol. 2002, 40, 1005–1009.

  • Augusti, K.I.; Roy, V.C.; Semple, M. Effect of allyl propyl disulphide isolated from onion (Allium cepa L.) on glucose tolerance of alloxan diabetic rabbits. Experientia 1974, 30, 1119–1120.

  • Jovanovski, E.; Li, D.; Thanh Ho, H.V.; Djedovic, V.; de Ruiz Marques, A.C.; Shishtar, E.; Mejia, S.B.; Sievenpiper, J.L.; de Souza, R.J.; Duvnjak, L.; et al. The effect of alpha-linolenic acid on glycemic control in individuals with type 2 diabetes: A systematic review and meta-analysis of randomized controlled clinical trials. Medicine 2017, 96, e6531.

  • Singh, K.K.; Mridula, D.; Rehal, J.; Barnwal, P. Flaxseed: A potential source of food, feed and fi ber. Crit. Rev. Food Sci. Nutr. 2011, 51, 210–222.

  • Akrami, A.; Nikaein, F.; Babajafari, S.; Faghih, S.; Yarmohammadi, H. Comparison of the effects of fl axseed oil and sunfl ower seed oil consumption on serum glucose, lipid profi le, blood pressure, and lipid peroxidation in patients with metabolic syndrome. J. Clin. Lipidol. 2017, in press.

  • Hashemzadeh, A.A.; Nasoohi, N.; Raygan, F.; Aghadavod, E.; Akbari, E.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z. Flaxseed Oil Supplementation Improve Gene Expression Levels of PPAR-gamma, LP(a), IL-1 and TNF-alpha in Type 2 Diabetic Patients with Coronary Heart Disease. Lipids 2017, 52, 907–915.

  • Mani, U.V.; Mani, I.; Biswas, M.; Kumar, S.N. An open-label study on the effect of fl ax seed powder (Linum usitatissimum) supplementation in the management of diabetes mellitus. J. Diet. Suppl. 2011, 8, 257–265.

  • Thakur, G.; Mitra, A.; Pal, K.; Rousseau, D. Effect of fl axseed gum on reduction of blood glucose and cholesterol in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2009, 60, 126–136.

  • World Health Organization. WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 2002; Volume 2.

  • Pattanayak, P.; Behera, P.; Das, D.; Panda, S.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev. 2010, 4, 95–105.

  • Agrawal, P.; Rai, V.; Singh, R.B. Randomized placebo-controlled, single blind trial of holy basil leaves in patients with noninsulin-dependent diabetes mellitus. Int. J. Clin. Pharmacol. Ther. 1996, 34, 406–409.

  • World Health Organization. WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 2007; Volume 3.

  • Bahmani, M.; Shirzad, H.; Mirhosseini, M.; Mesripour, A.; Rafi eian-Kopaei, M. A Review on Ethnobotanical and Therapeutic Uses of Fenugreek (Trigonella foenum-graceum L.). J. Evid.-Based. Complement. Altern. Med. 2016, 21, 53–62.

  • Neelakantan, N.; Narayanan, M.; de Souza, R.J.; van Dam, R.M. Effect of fenugreek (Trigonella foenumgraecum L.) intake on glycemia: A meta-analysis of clinical trials. Nutr. J. 2014, 13, 7.

  • Suksomboon, N.; Poolsup, N.; Boonkaew, S.; Suthisisang, C.C. Meta-analysis of the effect of herbal supplement on glycemic control in type 2 diabetes. J. Ethnopharmacol. 2011, 137, 1328–1333.

  • Shojaii, A.; Dabaghian, F.H.; Goushegir, A.; Fard, M.A. Antidiabetic plants of Iran. Acta Med. Iran. 2011, 49, 637–642.

  • Nahas, R.; Moher, M. Complementary and alternative medicine for the treatment of type 2 diabetes. Can. Fam. Physician 2009, 55, 591–596.

  • Raju, J.; Gupta, D.; Rao, A.R.; Yadava, P.K.; Baquer, N.Z. Trigonellafoenum graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Mol. Cell. Biochem. 2001, 224, 45–51.

  • Ravikumar, P.; Anuradha, C.V. Effect of fenugreek seeds on blood lipid peroxidation and antioxidants in diabetic rats. Phytother. Res. 1999, 13, 197–201.

  • Vijayakumar, M.V.; Singh, S.; Chhipa, R.R.; Bhat, M.K. The hypoglycaemic activity of fenugreek seed extract is mediated through the stimulation of an insulin signalling pathway. Br. J. Pharmacol. 2005, 146, 41–48.

  • Koupy, D.; Kotolova, H.; Ruda Kucerova, J. Effectiveness of phytotherapy in supportive treatment of type 2 diabetes mellitus II. Fenugreek (Trigonella foenum-graecum). Ceska Slov. Farm. 2015, 64, 67–71.

  • Zhou, J.; Chan, L.; Zhou, S. Trigonelline: A Plant Alkaloid with Therapeutic Potential for Diabetes and Central Nervous System Disease. Curr. Med. Chem. 2012, 19, 3523–3531.

  • Kalailingam, P.; Kannaian, B.; Tamilmani, E.; Kaliaperumal, R. Effi cacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine 2014, 21, 1154–1161.

  • Uemura, T.; Hirai, S.; Mizoguchi, N.; Goto, T.; Lee, J.-Y.; Taketani, K.; Nakano, Y.; Shono, J.; Hoshino, S.; Tsuge, N.; et al. Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting infl ammation in adipose tissues. Mol. Nutr. Food Res. 2010, 54, 1596–1608.

  • Son, I.S.; Kim, J.H.; Sohn, H.Y.; Son, K.H.; Kim, J.-S.; Kwon, C.-S. Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats. Biosci. Biotechnol. Biochem. 2007, 71, 3063–3071.

  • Zafar, M.I.; Gao, F. 4-Hydroxyisoleucine: A Potential New Treatment for Type 2 Diabetes Mellitus. Bio- Drugs 2016, 30, 255–262.

  • Jette, L.; Harvey, L.; Eugeni, K.; Levens, N. 4-Hydroxyisoleucine: A plant-derived treatment for metabolic syndrome. Curr. Opin. Investig. Drugs 2009, 10, 353–358.

  • Broca, C.; Manteghetti, M.; Gross, R.; Baissac, Y.; Jacob, M.; Petit, P.; Sauvaire, Y.; Ribes, G. 4-Hydroxyisoleucine: Effects of synthetic and natural analogues on insulin secretion. Eur. J. Pharmacol. 2000, 390, 339–345.

  • Sauvaire, Y.; Petit, P.; Broca, C.; Manteghetti, M.; Baissac, Y.; Fernandez-Alvarez, J.; Gross, R.; Roye, M.; Leconte, A.; Gomis, R.; et al. 4-Hydroxyisoleucine: A novel amino acid potentiator of insulin secretion. Diabetes 1998, 47, 206–210.

  • Hannan, J.M.A.; Ali, L.; Rokeya, B.; Khaleque, J.; Akhter, M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Soluble dietary fi bre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Br. J. Nutr. 2007, 97, 514–521.

  • Srichamroen, A.; Field, C.J.; Thomson, A.B.R.; Basu, T.K. The Modifying Effects of Galactomannan from Canadian-Grown Fenugreek (Trigonella foenum-graecum L.) on the Glycemic and Lipidemic Status in Rats. J. Clin. Biochem. Nutr. 2008, 43, 167–174.

  • Hannan, J.M.A.; Rokeya, B.; Faruque, O.; Nahar, N.; Mosihuzzaman, M.; Azad Khan, A.K.; Ali, L. Effect of soluble dietary fi bre fraction of Trigonella foenum graecum on glycemic, insulinemic, lipidemic and platelet aggregation status of Type 2 diabetic model rats. J. Ethnopharmacol. 2003, 88, 73–77.

  • Mancuso, C.; Santangelo, R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem. Toxicol. 2017, 107, 362–372.

  • Park, H.J.; Kim, D.H.; Park, S.J.; Kim, J.M.; Ryu, J.H. Ginseng in Traditional Herbal Prescriptions. J. Ginseng Res. 2012, 36, 225–241.

  • Guerrero-Solano, J.A.; Jaramillo-Morales, O.A.; Jimenez-Cabrera, T.; Urrutia-Hernandez, T.A.; Chehue- Romero, A.; OlveraHernandez, E.G.; Bautista, M. Punica protopunica Balf. the Forgotten Sister of the Common Pomegranate (Punica granatum L.): Features and Medicinal Properties-A Review. Plants 2020, 9, 1214.

  • Chaves, F.M.; Pavan, I.C.B.; da Silva, L.G.S.; de Freitas, L.B.; Rostagno, M.A.; Antunes, A.E.C.; Bezerra, R.M.N.; Simabuco, F.M. Pomegranate juice and peel extracts are able to inhibit proliferation, migration and colony formation of prostate cancer cell lines and modulate the Akt/mTOR/S6K signaling pathway. Plant. Foods Hum. Nutr. 2020, 75, 54–62.

  • Melgarejo-Sánchez, P.; Núñez-Gómez, D.; Martínez-Nicolás, J.J.; Hernández, F.; Legua, P.; Melgarejo, P. Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: A review. Bioresour. Bioprocess. 2021, 8, 1–29.

  • Jandari, S.; Hatami, E.; Ziaei, R.; Ghavami, A.; Yamchi, A.M. The effect of pomegranate (Punica granatum) supplementation on metabolic status in patients with type 2 diabetes: A systematic review and metaanalysis. Complement. Med. 2020, 52, 102478.

  • Estrada-Luna, D.; Martinez-Hinojosa, E.; Cancino-Diaz, J.C.; Belefant-Miller, H.; Lopez-Rodriguez, G.; Betanzos-Cabrera, G. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet. Eur. J. Nutr. 2018, 57, 383–389.

  • Li, T.; Zhang, L.; Jin, C.; Xiong, Y.; Cheng, Y.Y.; Chen, K. Pomegranate fl ower extract bidirectionally regulates the proliferation, differentiation and apoptosis of 3T3-L1 cells through regulation of PPARgamma expression mediated by PI3K-AKT signaling pathway. Biomed. Pharm. 2020, 131, 110769.

  • Banihani, S.A.; Fashtaky, R.A.; Makahleh, S.M.; El-Akawi, Z.J.; Khabour, O.F.; Saadeh, N.A. Effect of fresh pomegranate juice on the level of melatonin, insulin, and fasting serum glucose in healthy individuals and people with impaired fasting glucose. Food Sci. Nutr. 2020, 8, 567–574.

  • Les, F.; Arbones-Mainar, J.M.; Valero, M.S.; Lopez, V. Pomegranate polyphenols and urolithin A inhibit alpha-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J. Ethnopharmacol. 2018, 220, 67–74.

  • Cano-Lamadrid, M.; Tkacz, K.; Turkiewicz, I.P.; Nowicka, P.; Hernandez, F.; Lech, K.; Carbonell-Barrachina, A.A.; Wojdylo, A. Inhibition of enzymes associated with metabolic and neurological disorder by dried pomegranate sheets as a function of pomegranate cultivar and fruit puree. J. Sci. Food Agric. 2020, 101, 2294–2303.

  • Chakraborty, M.; Ahmed, M.G.; Bhattacharjee, A. Potential pharmacodynamic and pharmacokinetic interaction of pomegranate juice and nateglinide against diabetis induced complications in rats. Synergy 2017, 5, 1–6.

  • Khajebishak, Y.; Payahoo, L.; Alivand, M.; Alipour, B. Punicic acid: A potential compound of pomegranate seed oil in Type 2 diabetes mellitus management. J. Cell. Physiol. 2019, 234, 2112–2120.

  • Heshmati, J.; Namazi, N. Effects of black seed (Nigella sativa) on metabolic parameters in diabetes mellitus: A systematic review. Complement. Ther. Med. 2015, 23, 275–282.

  • Hosseini, M.S.; Mirkarimi, S.A.; Amini, M.; Mohtashami, R.; Kianbakht, S.; Fallah Huseini, H. Effects of Nigella sativa L. Seed Oil in Type II Diabetic Patients: A Randomized, Double-Blind, Placebo Controlled Clinical Trial. JMPIR 2013, 3, 93–99.

  • Ahmad, B.; Tariq, M.; Uppal, A.M.; Naveed, A.K. Effects of Nigella sativa oil on some blood parameters in type 2 diabetes mellitus patients. Asian J. Chem. 2009, 21, 5373–5381.

  • Kaatabi, H.; Bamosa, A.O.; Badar, A.; Al-Elq, A.; Abou-Hozaifa, B.; Lebda, F.; Al-Khadra, A.; Al-Almaie, S. Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: Placebo controlled participant blinded clinical trial. PLoS ONE 2015, 10, e0113486.

  • Bamosa, A.O.; Kaatabi, H.; Lebdaa, F.M.; Elq, A.M.; Al-Sultanb, A. Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian J. Physiol. Pharmacol. 2010, 54, 344–354.

  • Bamosa, A.; Kaatabi, H.; Badar, A.; Al-Khadra, A.; Al Elq, A.; Abou-Hozaifa, B.; Lebda, F.; Al-Almaie, S. Nigella sativa: A potential natural protective agent against cardiac dysfunction in patients with type 2 diabetes mellitus. J. Fam. Community Med. 2015, 22, 88–95.

  • El-Shamy, K.A.; Mosa, M.M.A.; El-Nabarawy, S.K.; El-Qattan, M. Effect of Nigella sativa tea in type 2-diabetic patients as regards glucose homeostasis, liver and kidney functions. J. Appl. Sci. Res. 2011, 7, 1982–1991.

  • Francesca Pivari, Alessandra Mingione, Caterina Brasacchio, Laura Soldati. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients 2019, 11, 1837.

  • Melilli, M.G.; Pagliaro, A.; Scandurra, S.; Gentile, C.; Di Stefano, V. Omega-3 rich foods: Durum wheat spaghetti fortifi ed with Portulaca oleracea. Food Biosci. 2020, 37, 100730.

  • Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, 320, 126621.

  • Saratale, G.D.; Saratale, R.G.; Cho, S.-K.; Ghodake, G.; Bharagava, R.N.; Park, Y.; Mulla, S.I.; Kim, D.-S.; Kadam, A.; Nair, S.; et al. Investigation of photocatalytic degradation of reactive textile dyes by Portulaca oleracea-functionalized silver nanocomposites and exploration of their antibacterial and antidiabetic potentials. J. Alloy. Compd. 2020, 833, 155083.

  • Hu, Q.; Niu, Q.; Song, H.; Wei, S.; Wang, S.; Yao, L.; Li, Y.P. Polysaccharides from Portulaca oleracea L. regulated insulin secretion in INS-1 cells through voltage-gated Na(+) channel. Biomed. Pharm. 2019, 109, 876–885.

  • Chen, D.; Yao, J.-N.; Liu, T.; Zhang, H.-Y.; Li, R.-R.; Zhang, Z.-J.; Gu, X.-Z. Research and application of Portulaca oleracea in pharmaceutical area. Chin. Herb. Med. 2019, 11, 150–159.

  • Park, J.E.; Park, J.Y.; Seo, Y.; Han, J.S. A new chromanone isolated from Portulaca oleracea L. increases glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. Int. J. Biol. Macromol. 2019, 123, 26–34.

  • Csiszar A. Anti-infl ammatory effects of resveratrol: possible role in prevention of age–related cardiovascular disease. Ann N Y Acad Sci. 2011;1215:117–122.

  • Richard T, Pawlus AD, Iglésias ML, et al. Neuroprotective properties of resveratrol and derivatives. Ann N Y Acad Sci. 2011;1215:103–108.

  • Szkudelski T, Szkudelska K. Anti-diabetic effects of resveratrol. Ann N Y Acad Sci. 2011;1215:34–39.

  • Pezzuto JM. The phenomenon of resveratrol: redefi ning the virtues of promiscuity. Ann N Y Acad Sci. 2011;1215:123–130.

Share This Chapter!