The Genetics of Diabetic Neuropathy
Zeliha Yucel (Author), Emine Berrin Yuksel (Author)
Release Date: 2023-09-14
Diabetic neuropathy, a common complication of diabetes mellitus (DM), involves nerve damage resulting from prolonged exposure to high blood sugar levels. Genetic factors play a crucial role in influencing susceptibility to this condition. Variations in genes related to nerve structure and function, inflammatory responses, and metabolic processes have been implicated in diabetic neuropathy. For instance, [...]
Media Type
PDF
Buy from
Price may vary by retailers
Work Type | Book Chapter |
---|---|
Published in | Current Perspective on Diabetes Mellitus in Clinical Sciences |
First Page | 423 |
Last Page | 436 |
DOI | https://doi.org/10.69860/nobel.9786053359111.39 |
ISBN | 978-605-335-911-1 (PDF) |
Language | ENG |
Page Count | 14 |
Copyright Holder | Nobel Tıp Kitabevleri |
License | https://nobelpub.com/publish-with-us/copyright-and-licensing |
Zeliha Yucel (Author)
Karamanoglu Mehmetbey University
https://orcid.org/0000-0002-2303-9704
Emine Berrin Yuksel (Author)
Prof. Dr., Karamanoglu Mehmetbey University
https://orcid.org/0000-0001-7107-1939
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022 Jan; 183:109119.
Deli G, Bosnyak E, Pusch G, Komoly S, Feher G. Diabetic neuropathies: Diagnosis and management. Neuroendocrinology. 2013;98(4):267–80.
Singh R, Kishore L, Kaur N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol Res. 2014; 80:21–35.
Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol. 2012;11(6):521–34.
Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019 Jun 13;5(1):41.
Erbaş T, Dağdelen S, Atmaca A, Tütüncü NB. Diyabet ve Sinir Sistemi. In: Diabetes mellitus Multidisipliner Yaklaşımla Tanı Tedavi ve İzlem. 2009. p. 362–94.
Yagihashi S. Advances in pathology of diabetes from pancreatic islets to neuropathy-a tribute to Paul Langerhans. Vol. 65, Pathology International. 2015. p. 157–69.
Ceriello A. The possible role of postprandial hyperglycaemia in the pathogenesis of diabetic complications. Diabetologia. 2003; Suppl 1:M9-16.
Thrainsdottir S, Malik RA, Dahlin LB, Wiksell P, Eriksson KF, Rosé n I, et al. Endoneurial Capillary Abnormalities Presage Deterioration of Glucose Tolerance and Accompany Peripheral Neuropathy in Man. Diabetes. 2003 Oct 1;52(10):2615–22.
Nowicki M, Kosacka J, Serke H, Blu M, Spanel-borowski K. Altered Sciatic Nerve Fiber Morphology and Endoneural Microvessels in Mouse Models Relevant for Obesity, Peripheral Diabetic Polyneuropathy, and the Metabolic Syndrome. 2012;131(May 2011):122–31.
Tesfaye S, Chaturvedi N, Eaton SEM, Ward JD, Manes C, Ionescu-Tirgoviste C, et al. Vascular Risk Factors and Diabetic Neuropathy. New England Journal of Medicine 2005 Jan 27;352(4):341–50
Callaghan BC, Gao L, Li Y, Zhou X, Reynolds E, Banerjee M, et al. Diabetes and obesity are the main metabolic drivers of peripheral neuropathy. Ann Clin Transl Neurol. 2018 Apr;5(4):397–405.
Callaghan BC, Xia R, Banerjee M, de Rekeneire N, Harris TB, Newman AB et al. Metabolic Syndrome Components Are Associated With Symptomatic Polyneuropathy Independent of Glycemic Status. Diabetes Care. 2016 May 1;39(5):801–7.
Andersen ST, Witte DR, Dalsgaard EM, Andersen H, Nawroth P, Fleming T et al. Risk Factors for Incident Diabetic Polyneuropathy in a Cohort With Screen-Detected Type 2 Diabetes Followed for 13 Years: ADDITION-Denmark. Diabetes Care. 2018 May 1;41(5):1068–75.
Callaghan BC, Price RS, Feldman EL. Distal symmetric polyneuropathy a review. Vol. 314, JAMA- Journal of the American Medical Association. 2015. p. 2172–81.
Callaghan BC, Gallagher G, Fridman V, Feldman EL. Diabetic neuropathy: what does the future hold? Diabetologia. 2020 May 23;63(5):891–7.
Vague P, Dufayet D, Coste T, Moriscot C, Jannot MF, Raccah D. Association of diabetic neuropathy with Na/K ATPase gene polymorphism. Diabetologia. 1997;40(5):506–11.
Politi C, Ciccacci C, Amato CD, Novelli G, Borgiani P. Recent advances in exploring the genetic susceptibility to diabetic neuropathy. Diabetes Res Clin Pract 2016;120(0):198–208.
Zhao Y, Zhu R, Wang D, Liu X. Genetics of diabetic neuropathy: Systematic review, meta-analysis and trial sequential analysis. Ann Clin Transl Neurol. 2019;6(10):1996–2013.
Prabodha LBL, Sirisena ND, Dissanayake VHW. Susceptible and prognostic genetic factors associated with diabetic peripheral neuropathy: A comprehensive literature review. Int J Endocrinol. 2018;2018.
Masi S, Uliana M, Virdis A. Angiotensin II and vascular damage in hypertension: Role of oxidative stress and sympathetic activation. Vol. 115, Vascular Pharmacology. Elsevier Inc; 2019. p. 13–7.
Inanir A, Basol N, Karakus N, Yigit S. The importance of association between angiotensin-converting enzyme (ACE) Gene I / D polymorphism and diabetic peripheral neuropathy. Gene. 2013;530(2):253–6.
Settin A, El-Baz R, Ismaeel A, Tolba W, Allah WA. Association of ACE and MTHFR genetic polymorphisms with type 2 diabetes mellitus: Susceptibility and complications. JRAAS- Journal of the ReninAngiotensin-Aldosterone System. 2015;16(4):838–43.
Mansoor Q, Javaid A, Bilal N, Ismail M. Angiotensin-converting enzyme (ACE) gene II genotype protects against the development of diabetic peripheral neuropathy in type 2 diabetes mellitus. J Diabetes. 2012 Sep;4(3):257–61.
Jurado J, Ybarra J, Romeo JH, Garcia M, Zabaleta-del-Olmo E. Angiotensin-converting enzyme gene single polymorphism as a genetic biomarker of diabetic peripheral neuropathy: longitudinal prospective study. J Diabetes Complications. 2012 Mar;26(2):77–82.
Ito H, Tsukui S, Kanda T, Utsugi T, Ohno T, Kurabayashi M. Angiotensin-Converting Enzyme Insertion/ Deletion Polymorphism and Polyneuropathy in Type 2 Diabetes without Macroalbuminuria. Journal of International Medical Research. 2002 Oct 25;30(5):476–82.
Wu S, Han Y, Hu Q, Zhang X, Cui G, Li Z, et al. Effects of Common Polymorphisms in the MTHFR and ACE Genes on Diabetic Peripheral Neuropathy Progression: a Meta-Analysis. Mol Neurobiol. 2017;54(4):2435–44.
Li Y, Tong N. Angiotensin-converting enzyme I/D polymorphism and diabetic peripheral neuropathy in type 2 diabetes mellitus: A meta-analysis. Journal of the Renin-Angiotensin-Aldosterone System. 2015 Dec 20;16(4):787–92.
Xu W, Qian Y, Zhao L. Angiotensin-converting enzyme I/D polymorphism is a genetic biomarker of diabetic peripheral neuropathy: Evidence from a meta-analysis. Int J Clin Exp Med. 2015;8(1):944–8.
Malik RA, Williamson S, Abbott C, Carrington AL, Iqbal J, Schady W et al. Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: Randomised double-blind controlled trial. Lancet. 1998;352(9145):1978–81.
Ruggenenti P, Lauria G, Iliev IP, Fassi A, Ilieva AP, Rota S et al. Effects of manidipine and delapril in hypertensive patients with type 2 diabetes mellitus: The delapril and manidipine for nephroprotection in diabetes (DEMAND) randomized clinical trial. Hypertension. 2011;58(5):776–83.
Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Vol. 354, Lancet. 1999. p. 407–13.
Moll S, Varga EA. Homocysteine and MTHFR mutations. Circulation. 2015;132(1): e6–69.
Xu C, Wu Y, Liu G, Liu X, Wang F, Yu J. Relationship between homocysteine level and diabetic retinopathy: a systematic review and meta-analysis. Diagn Pathol. 2014; 9:167.
Schliisser E, Preibisch G, Pütter S, Elstner EF. Homocysteine-Induced Oxidative Damage: Mechanisms and Possible Roles in Neurodegenerative and Atherogenic Processes. Zeitschrift fur Naturforschung - Section C Journal of Biosciences. 1995;50(9–10):699–707.
Yigit S, Karakus N, Inanir A. Association of MTHFR gene C677T mutation with diabetic peripheral neuropathy and diabetic retinopathy. Mol Vis. 2013;19(July):1626–30.
Hamidi AK, Radfar M, Amoli MM. Association between MTHFR variant and diabetic neuropathy. Pharmacological Reports. 2017.
Giandalia GTRA, Scarcella ELRC. Diabetic neuropathy is not associated with homocysteine, folate, vitamin B12 levels, and MTHFR C677T mutation in type 2 diabetic outpatients taking metformin. J Endocrinol Invest. 2015;
Jiménez-Ramírez FJ, Castro LM, Ortiz C, Concepción J, Renta JY, Morales-Borges RH et al. Role of treatment-modifying MTHFR677C>T and 1298A>C polymorphisms in metformin-treated Puerto Rican patients with type-2 diabetes mellitus and peripheral neuropathy. Drug Metab Pers Ther. 2017;32(1):23–32.
Kopprasch S, Pietzsch J, Kuhlisch E, Fuecker K, Temelkova-Kurktschiev T, Hanefeld M et al. In vivo evidence for increased oxidation of circulating LDL in impaired glucose tolerance. Diabetes. 2002;51(10):3102–6.
Forgione MA, Weiss N, Heydrick S, Cap A, Klings ES, Bierl C, et al. Cellular glutathione peroxidase defi ciency and endothelial dysfunction. American Journal of Physiology-Heart and Circulatory Physiology. 2002 Apr 1;282(4):H1255–61.
Beckett GJ, Arthur JR. Selenium and endocrine systems. Journal of Endocrinology. 2005 Mar;184(3):455–65.
Sun DQ, Li AW, Li J, Li DG, Li YX, Hao-Feng, et al. Changes of lipid peroxidation in carbon disulfi detreated rat nerve tissues and serum. Chem Biol Interact. 2009;179(2–3):110–7.
Kishi Y, Nickander KK, Schmelzer JD, Low PA. Gene expression of antioxidant enzymes in experimental diabetic neuropathy. Journal of the Peripheral Nervous System. 2000 Mar 25;5(1):11–8.
Martínez-Blasco A, Bosch-Morell F, Trenor C, Romero FJ. Experimental diabetic neuropathy: Role of oxidative stress and mechanisms involved. BioFactors. 1998;8(1–2):41–3.
Tang TS, Prior SL, Li KW, Ireland HA, Bain SC, Hurel SJ, et al. Association between the rs1050450 glutathione peroxidase-1 (C>T) gene variant and peripheral neuropathy in two independent samples of subjects with diabetes mellitus. Nutrition, Metabolism and Cardiovascular Diseases. 2012;22(5):417–25.
Bašić J, Vojinović J, Jevtović-Stoimenov T, Despotović M, Cvetković T, Lazarević D, et al. The association of CAT-262C/T polymorphism with catalase activity and treatment response in juvenile idiopathic arthritis. Rheumatol Int 2019;39(3):551–9.
Snahnicanova Z, Mendelova A, Grendar M, Holubekova V, Kostkova M, Pozorciakova K, et al. Association of Polymorphisms in CYBA, SOD1, and CAT Genes with Type 1 Diabetes and Diabetic Peripheral Neuropathy in Children and Adolescents. Genet Test Mol Biomarkers [Internet]. 2018 Jul;22(7):413–9.
Kasznicki J, Sliwinska A, Kosmalski M, Merecz A, Majsterek I, Drzewoski J. Genetic polymorphisms (Pro197Leu of Gpx1, +35A/C of SOD1, -262C/T of CAT), the level of antioxidant proteins (GPx1, SOD1, CAT) and the risk of distal symmetric polyneuropathy in Polish patients with type 2 diabetes mellitus. Adv Med Sci. 2016;61(1):123–9.
Babizhayev MA, Strokov IA, Nosikov V V, Savel’yeva EL, Sitnikov VF, Yegor E. Yegorov, et al. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patient. Cell Biochem Biophys. 2015 Apr 27;71(3):1425–43.
Mahley RW. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Vol. 240, Science. 1988. p. 622–30.
Vincent AM, Hinder LM, Pop-Busui R, Feldman EL. Hyperlipidemia: A new therapeutic target for diabetic neuropathy. Vol. 14, Journal of the Peripheral Nervous System. 2009. p. 257–67.
Voron’ko OE, Iakunina NI, Strokov IA, Lavrova IN, Nosikov V V. Association of polymorphic markers of lipid metabolism genes with diabetic polyneuropathy in type 1 diabetes mellitus. Molekuliarnaia biologiia. 2005;39(2):230–4.
Bedlack RS, Edelman D, Gibbs JW, Kelling D, Strittmatter W, Saunders AM, et al. APOE genotype is a risk factor for neuropathy severity in diabetic patients. Neurology. 2003;60(6):1022–4.
Zhou Z, Hoke A, Cornblath DR, Griffi n JW, Polydefkis M. APOE ε4 is not a susceptibility gene in idiopathic or diabetic sensory neuropathy. Neurology. 2005;64(1):139–41.
Dyck PJ, Litchy WJ, Hokanson JL, Low JL, O’Brien PC. Variables infl uencing neuropathic endpoints: The rochester diabetic neuropathy study of healthy subjects. Neurology. 1995;45(6):1115–21.
Monastiriotis C, Papanas N, Veletza S, Maltezos E. APOE gene polymorphisms and diabetic peripheral neuropathy. Vol. 8, Archives of Medical Science. 2012. p. 583–8.
Monastiriotis C, Papanas N, Trypsianis G, Karanikola K, Veletza S, Maltezos E. The ε4 Allele of the APOE gene is associated with more severe peripheral neuropathy in type 2 diabetic patients. Angiology. 2013;64(6):451–5.
Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Vol. 63, Cellular and Molecular Life Sciences. 2006. p. 601–15.
Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Vol. 312, Experimental Cell Research. 2006. p. 549–60.
Kikuchi R, Nakamura K, Maclauchlan S, Ngo DT minh, Shimizu I, Fuster JJ, et al. An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. Nat Med. 2014;(November).
Deguchi T, Hashiguchi T, Horinouchi S, Uto T, Oku H, Kimura K, et al. Serum VEGF increases in diabetic polyneuropathy, particularly in the neurologically active symptomatic stage. Diabetic Medicine. 2009;26(3):247–52.
Tavakkoly-Bazzaz J, Amoli MM, Pravica V, Chandrasecaran R, Boulton AJM, Larijani B, et al. VEGF gene polymorphism association with diabetic neuropathy. Mol Biol Rep. 2010;37(7):3625–30.
Stoian A, Bacârea A, Moţǎţǎianu A, Stoian M, Gliga F, Bacârea V, et al. Polimorfi smului Inserţie/Deleţie al genei Factorului de Creştere Endotelial Vascular la pacienţii cu diabet zaharat tip 2 şi polineuropatie diabeticǎ perifericǎ. Rev Rom Med Lab. 2014 Jan 1;22(2):165–72.
Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in infl ammation, immune responses and diabetes mellitus and its complications. Vol. 52, Diabetologia. 2009. p. 2251–63.
Stirban A, Tschoepe D, Stratmann B. Shifting the disease management paradigm from glucose: what are the pros? Vol. 32 Suppl 2, Diabetes care. 2009. p. 0–3.
Skapare E, Konrade I, Liepinsh E, Strele I, Makrecka M, Bierhaus A, et al. Journal of Diabetes and Its Complications Association of reduced glyoxalase 1 activity and painful peripheral diabetic neuropathy in type 1 and 2 diabetes mellitus patients. J Diabetes Complications. 2013;27(3):262–7.
Groener JB, Reismann P, Fleming T, Kalscheuer H, Lehnhoff D, Hamann A, et al. C332C genotype of glyoxalase 1 and its association with late diabetic complications. Experimental and Clinical Endocrinology and Diabetes. 2013;121(7):436–9.
Cyr AR, Huckaby L V, Shiva SS, Zuckerbraun BS. Nitric Oxide and Endothelial Dysfunction. Vol. 36, Critical Care Clinics. Elsevier Inc; 2020. p. 307–21.
Star RA. Intrarenal localization of nitric oxide synthase isoforms and soluble guanylyl cyclase. In: Clinical and Experimental Pharmacology and Physiology. 1997. p. 607–10.
Boulton AJM. Diabetic neuropathy: Classifi cation, measurement and treatment. Vol. 14, Current Opinion in Endocrinology, Diabetes and Obesity. 2007. p. 141–5.
Yigit S, Nursal AF, Uzun S, Rustemoglu H, Dashatan PA, Soylu H, Atmaca A, Rustemoglu A, Kuruca N. Impact of Endothelial NOS VNTR Variant on Susceptibility to Diabetic Neuropathy and Type 2 Diabetes Mellitus. Curr Neurovasc Res. 2020;17(5):700-.
N Shah V. Endothelial Nitric Oxide Synthase Gene Polymorphism and the Risk of Diabetic Neuropathy in Asian Indian Patients with Type 2 Diabetes. J Diabetes Metab. 2013;04(02).
Sobti RC, Maithil N, Thakur H, Sharma Y, Talwar KK. VEGF and IL-4 gene variability and its association with the risk of coronary heart disease in north Indian population. Mol Cell Biochem. 2010;341(1–2):139– 48.
Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH. Monocyte chemoattractant protein-1-induced tissue infl ammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia. 2007;50(2):471–80.
Chang YH, Ho KT, Lu SH, Huang CN, Shiau MY. Regulation of glucose/lipid metabolism and insulin sensitivity by interleukin-4. Int J Obes. 2012;36(7):993–8.
Nakashima H, Miyake K, Inoue Y, Shimizu S, Akahoshi M, Tanaka Y, et al. Association between IL-4 genotype and IL-4 production in the Japanese population. Genes Immun. 2002;3(2):107–9.
Basol N, Inanir A, Yigit S, Karakus N, Kaya SU. High association of IL-4 gene intron 3 VNTR polymorphism with diabetic peripheral neuropathy. Journal of Molecular Neuroscience. 2013;51(2):437–41.
Hong E gyoung, Ko HJ, Cho Y ree, Kim H jeong, Ma Z, Yu TY, et al. Interleukin-10 prevents diet-induced Insulin resistance skeletal muscle. Diabetes. 2009;58(November):2525–35.
Van Exel E, Gussekloo J, De Craen AJM, Frölich M, Wiel AB Van Der, Westendorp RGJ. Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: The Leiden 85-plus study. Diabetes. 2002;51(4):1088–92.
Hua Y, Shen J, Song Y, Xing Y, Ye X. Interleukin-10 -592C/A, -819C/T and -1082A/G Polymorphisms with Risk of Type 2 Diabetes Mellitus: A HuGE Review and Meta-analysis. Vol. 8, PLoS ONE. 2013. p. 6–11.
Scarpelli D, Cardellini M, Andreozzi F, Laratta E, Hribal ML, Marini MA, et al. Variants of the interleukin-10 promoter gene are associated with obesity and insulin resistance but not type 2 diabetes in Caucasian Italian subjects. Diabetes. 2006;55(5):1529–33.
Tagore A, Gonsalkorale WM, Pravica V, Hajeer AH, McMahon R, Whorwell PJ, et al. Interleukin-10 (IL10) genotypes in infl ammatory bowel disease. Tissue Antigens. 1999;54(4):386–90.
Canecki-Varžić S, Prpić-Križevać I, Mihaljević S, Bilić-Ćurčić I, Alkhamis T, Wagner J, et al. Association between interleukin-10 gene (-1082G/A) polymorphism and type 2 diabetes, diabetes-related traits, and microvascular complications in the Croatian population. Acta Clin Croat. 2018;57(1):71–81.
Karunakar V, Madhavi G, Reddy BP, Babu BMVS, Yashovanthi J, Lakshmi V, et al. Cytokine Association of tumor necrosis factor alpha, interferon gamma and interleukin 10 gene polymorphisms with peripheral neuropathy in South Indian patients with type 2 diabetes. Cytokine. 2009;47(3):173–7.
Cousijn H, Rijpkema M, Qin S, Van Marle HJF, Franke B, Hermans EJ, et al. Acute stress modulates genotype effects on amygdala processing in humans. Proc Natl Acad Sci U S A. 2010;107(21):9867–72.
Sivenius K, Lindi V, Niskanen L, Laakso M, Uusitupa M. Effect of a three-amino acid deletion in the α2B-adrenergic receptor gene on long-term body weight change in fi nnish non-diabetic and type 2 diabetic subjects. Int J Obes. 2001;25(11):1609–14.
Siitonen N, Lindström J, Eriksson J, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al. Association between a deletion/insertion polymorphism in the α2B-adrenergic receptor gene and insulin secretion and Type 2 diabetes. The Finish Diabetes Prevention Study. Diabetologia. 2004;47(8):1416–24.
Papazoglou D, Papanas N, Papatheodorou K, Kotsiou S, Christakidis D, Maltezos E. An insertion/deletion polymorphism in the alpha2B adrenoceptor gene is associated with age at onset of type 2 diabetes mellitus. Experimental and Clinical Endocrinology and Diabetes. 2006;114(8):424–7.
Papanas N, Papatheodorou K, Papazoglou D, Kotsiou S, Christakidis D, Maltezos E. An insertion/deletion polymorphism in the alpha2B adrenoceptor gene is associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Experimental and Clinical Endocrinology and Diabetes. 2007;115(5):327–30.
Ginsberg G, Smolenski S, Hattis D, Guyton KZ, Johns DO, Sonawane B. Genetic polymorphism in glutathione transferases (GST): Population distribution of GSTM1, T1, and P1 conjugating activity [Internet]. Vol. 12, Journal of Toxicology and Environmental Health - Part B: Critical Reviews. 2009. p. 389–439.
Sudip K Datta 1, Vivek Kumar, Rafat S Ahmed, Ashok K Tripathi, Om Prakash Kalra BDB. Effect of GSTM1 and GSTT1 double deletions in the development of oxidative stress in diabetic nephropathy patients. Indian J Biochem Biophys. 2010; Apr,47(2):
Zaki MA, Moghazy TF, El- MMK, Mohamed AH, Arafa N, Mohamed A, et al. polymorphisms and the risk of developing type 2 diabetes mellitus in Egyptian diabetic patients with and without diabetic vascular complications Glutathione S-transferase M1, T1 and P1 gene polymorphisms and the risk of developing type 2 diabetes mellitu. Alexandria Journal of Medicine. 2019;51(1):73–82.
Vojtková J, Ďurdík P, Čiljaková M, Michnová Z, Turčan T, Babušíková E. The association between glutathione S-transferase T1 and M1 gene polymorphisms and cardiovascular autonomic neuropathy in Slovak adolescents with type 1 diabetes mellitus. J Diabetes Complications. 2013 Jan;27(1):44–8.
Stoian A, Bănescu C, Bălaşa RI, Moţăţăianu A, Stoian M, Moldovan VG, et al. Infl uence of GSTM1, GSTT1, and GSTP1 Polymorphisms on Type 2 Diabetes Mellitus and Diabetic Sensorimotor Peripheral Neuropathy Risk. Dis Markers [Internet]. 2015; 2015:1–10.
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Vol. 9, Frontiers in Endocrinology. 2018. p. 1–12.
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011 Dec 18;12(12):861–74.
Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Vol. 116, Cell. 2004. p. 281– 97.
Grasso M, Piscopo P, Confaloni A, Denti MA. Circulating miRNAs as biomarkers for neurodegenerative disorders. Vol. 19, Molecules. 2014. p. 6891–910.
Harris V, Tuddenham J, Sadiq S. Biomarkers of multiple sclerosis: current fi ndings. Degener Neurol Neuromuscul Dis. 2017; Volume 7:19–29.
onix_3.0::thoth | Thoth ONIX 3.0 |
---|---|
onix_3.0::project_muse | Project MUSE ONIX 3.0 |
onix_3.0::oapen | OAPEN ONIX 3.0 |
onix_3.0::jstor | JSTOR ONIX 3.0 |
onix_3.0::google_books | Google Books ONIX 3.0 |
onix_3.0::overdrive | OverDrive ONIX 3.0 |
onix_2.1::ebsco_host | EBSCO Host ONIX 2.1 |
csv::thoth | Thoth CSV |
json::thoth | Thoth JSON |
kbart::oclc | OCLC KBART |
bibtex::thoth | Thoth BibTeX |
doideposit::crossref | CrossRef DOI deposit |
onix_2.1::proquest_ebrary | ProQuest Ebrary ONIX 2.1 |
marc21record::thoth | Thoth MARC 21 Record |
marc21markup::thoth | Thoth MARC 21 Markup |
marc21xml::thoth | Thoth MARC 21 XML |