Release Date: 2024-06-12

Types of Immunotherapy, Mechanism of Action and Side Effects

Release Date: 2024-06-12

Immunotherapy has emerged as a ground breaking approach in the treatment of various cancers and autoimmune diseases, utilizing the body’s immune system to combat disease. This article reviews the mechanisms of action of different types of immunotherapy, including checkpoint inhibitors, monoclonal antibodies, and adaptive cell transfer. Checkpoint inhibitors such as PD-1/PD-L1 and CTLA-4 blockers enhance [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inImmunotherapy in Human Cancers
    First Page11
    Last Page24
    DOIhttps://doi.org/10.69860/nobel.9786053359388.2
    Page Count14
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Immunotherapy has emerged as a ground breaking approach in the treatment of various cancers and autoimmune diseases, utilizing the body’s immune system to combat disease. This article reviews the mechanisms of action of different types of immunotherapy, including checkpoint inhibitors, monoclonal antibodies, and adaptive cell transfer. Checkpoint inhibitors such as PD-1/PD-L1 and CTLA-4 blockers enhance immune responses by releasing brakes on T cells, thereby promoting anti-tumor immunity. Monoclonal antibodies target specific antigens on cancer cells or immune cells, facilitating targeted destruction. Adaptive cell transfer involves modifying and re-infusing patient-derived immune cells to enhance their tumor-fighting capabilities. Despite their promise, immunotherapies can elicit immune-related adverse events ranging from mild to severe, affecting various organ systems. Common side effects include fatigue, rash, and gastrointestinal disturbances, while severe reactions may involve pneumonitis, colitis, or endocrinopathies. Understanding these mechanisms and side effects is crucial for optimizing patient care and expanding the therapeutic potential of immunotherapy.

    Birsen Sahip Yesiralioglu (Author)
    MD, Assistant Professor, Bülent Ecevit University
    https://orcid.org/0000-0001-5375-6432
    3Asist Prof. Birsen Sahip Yesiralioğlu, student in Ataturk University Medicine Faculty 2006, Internal medicine specialist in Trakya Medicine Faculty 2015, hematology specialist in Zonguldak Bulent Ecevit University 2021, from 2023 until now she is Asist Prof. in ZBEU.

    Hatice Ayag (Author)
    MD, Assistant Professor, Bülent Ecevit University
    https://orcid.org/0009-0000-3228-451X
    3Hatice Ayağ student in Dicle University Medicine Faculty 2004, Internal medicine specialist in Dicle Medicine Faculty 2011, hematology specialist in ZBEU 2024.

    Sehmus Ertop (Author)
    MD, Professor, Bülent Ecevit University
    https://orcid.org/0000-0001-8771-7343
    3Professor Şehmus Ertop student in Dicle University Medicine Faculty 1988, Internal medicine specialist in Dicle Medicine Faculty 1992, hematology specialist in Dicle University 1992, from 2011 until now she is Prof. in ZBEU.

    Muzeyyen Aslaner Ak (Author)
    Associate Professor, Bülent Ecevit University
    https://orcid.org/0000-0001-6621-3138
    3Muzeyyen Aslaner Assoc Professor is educated in Dokuz Eylül University Medicine Faculty 2000, Internal medicine specialist in Istanbul Trainin hospital 2009, hematology specialist in ZBEU University 2016, from 2016 until now she is Assoc Prof. in ZBEU.

    • Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci 1893; 105:487

    • Linsley, P. S., & Ledbetter, J. A. (1993). The role of the CD28 receptor during T cell responses to antigen. Annual review of immunology, 11(1), 191-212.

    • Rowshanravan, B., Halliday, N., & Sansom, D. M. (2018). CTLA-4: a moving target in immunotherapy. Blood, The Journal of the American Society of Hematology, 131(1), 58-67.

    • Mesonero, F., López-Sanromán, A., Madariaga, A., & Soria, A. (2016). Ipilimumab-induced colitis: a new challenge for gastroenterologists. Gastroenterología y Hepatología (English Edition), 39(3), 233-238.

    • Shiravand, Y., Khodadadi, F., Kashani, S. M. A., Hosseini-Fard, S. R., Hosseini, S., Sadeghirad, H., ... & Kulasinghe, A. (2022). Immune checkpoint inhibitors in cancer therapy. Current Oncology, 29(5), 3044-3060.

    • He, X., & Xu, C. (2020). Immune checkpoint signaling and cancer immunotherapy. Cell research, 30(8), 660-669.

    • Buder-Bakhaya, K., & Hassel, J. C. (2018). Biomarkers for clinical benefit of immune checkpoint inhibitor treatment—a review from the melanoma perspective and beyond. Frontiers in immunology, 9, 379459.

    • Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271(5256), 1734-1736.

    • Ruffo, E., Wu, R. C., Bruno, T. C., Workman, C. J., & Vignali, D. A. (2019, April). Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. In Seminars in immunology (Vol. 42, p. 101305). Academic Press.

    • Chen, Z., Hu, T., Zhou, J., Gu, X., Chen, S., Qi, Q., & Wang, L. (2024). Overview of tumor immunotherapy based on approved drugs. Life Sciences, 122419.

    • Qin, S., Xu, L., Yi, M., Yu, S., Wu, K., & Luo, S. (2019). Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Molecular cancer, 18, 1-14.

    • Crespo, J., Sun, H., Welling, T. H., Tian, Z., & Zou, W. (2013). T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Current opinion in immunology, 25(2), 214-221.

    • Davila, M. L., Brentjens, R., Wang, X., Rivière, I., & Sadelain, M. (2012). How do CARs work? Early insights from recent clinical studies targeting CD19. Oncoimmunology, 1(9), 1577-1583.

    • Maalej, K. M., Merhi, M., Inchakalody, V. P., Mestiri, S., Alam, M., Maccalli, C., ... & Dermime, S. (2023). CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Molecular Cancer, 22(1), 20.

    • Lian, H., Jiang, J., Wang, Y., Yu, X., Zheng, R., Long, J., ... & Gao, J. (2022). A novel multimeric sCD19‐streptavidin fusion protein for functional detection and selective expansion of CD19‐targeted CAR‐T cells. Cancer Medicine, 11(15), 2978-2989.

    • Benmebarek, M. R., Karches, C. H., Cadilha, B. L., Lesch, S., Endres, S., & Kobold, S. (2019). Killing mechanisms of chimeric antigen receptor (CAR) T cells. International journal of molecular sciences, 20(6), 1283.

    • Brandt, L. J., Barnkob, M. B., Michaels, Y. S., Heiselberg, J., & Barington, T. (2020). Emerging approaches for regulation and control of CAR T cells: a mini review. Frontiers in Immunology, 11, 513684.

    • Zheng, Z., Li, S., Liu, M., Chen, C., Zhang, L., & Zhou, D. (2023). Fine-tuning through generations: advances in structure and production of CAR-T therapy. Cancers, 15(13), 3476.

    • Knochelmann, H. M., Smith, A. S., Dwyer, C. J., Wyatt, M. M., Mehrotra, S., & Paulos, C. M. (2018). CAR T cells in solid tumors: blueprints for building effective therapies. Frontiers in immunology, 9, 407964.

    • Frey N, Porter D. Cytokine Release Syndrome with Chimeric Antigen Receptor T Cell Therapy. Biol Blood Marrow Transplant. 2019 Apr;25(4):e123-e127. doi: 10.1016/j. bbmt.2018.12.756. Epub 2018 Dec 23. PMID: 30586620.

    • Li, Y., Hermanson, D. L., Moriarity, B. S., & Kaufman, D. S. (2018). Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell stem cell, 23(2), 181-192.

    • Xu, Y., Liu, Q., Zhong, M., Wang, Z., Chen, Z., Zhang, Y., ... & Wang, J. (2019). 2B4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies. Journal of hematology & oncology, 12, 1-13.

    • Marofi, F., Al-Awad, A. S., Rahman, H. S., Markov, A., Abdelbasset, W. K., Enina, Y. I., ... & Jarahian, M. (2021). CAR-NK cell: a new paradigm in tumor immunotherapy. Frontiers in oncology, 11.

    • Marin, D., Li, Y., Basar, R., Rafei, H., Daher, M., Dou, J., ... & Rezvani, K. (2024). Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nature Medicine, 1-13.

    • Chiocca, E. A., & Rabkin, S. D. (2014). Oncolytic viruses and their application to cancer immunotherapy. Cancer immunology research, 2(4), 295-300.

    • Santry, L. A., van Vloten, J. P., Knapp, J. P., Matuszewska, K., McAusland, T. M., Minott, J. A., ... & Bridle, B. W. (2020). Tumour vasculature: friend or foe of oncolytic viruses?. Cytokine & Growth Factor Reviews, 56, 69-82.

    • Malogolovkin, A., Gasanov, N., Egorov, A., Weener, M., Ivanov, R., & Karabelsky, A. (2021). Combinatorial approaches for cancer treatment using oncolytic viruses: projecting the perspectives through clinical trials outcomes. Viruses, 13(7), 1271.

    • Rasa, A., & Alberts, P. (2023). Oncolytic virus preclinical toxicology studies. Journal of Applied Toxicology, 43(5), 620-648.

    • Kantoff, P. W., Higano, C. S., Shore, N. D., Berger, E. R., Small, E. J., Penson, D. F., ... & Schellhammer, P. F. (2010). Sipuleucel-T immunotherapy for castration-resistant prostate cancer. New England Journal of Medicine, 363(5), 411-422.

    • Gardner, T., Elzey, B., & Hahn, N. M. (2012). Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Human vaccines & immunotherapeutics, 8(4), 534-539.

    • Ozao-Choy J, Lee DJ, Faries MB. Melanoma vaccines: mixed past, promising future. Surg Clin North Am. 2014 Oct;94(5):1017-30, viii. doi: 10.1016/j.suc.2014.07.005. Epub 2014 Aug 7. PMID: 25245965; PMCID: PMC4173123.

    • Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H., & Lambrecht, B. N. (2014). The function of Fcγ receptors in dendritic cells and macrophages. Nature Reviews Immunology, 14(2), 94-108.

    • Golay, J., & Taylor, R. P. (2020). The role of complement in the mechanism of action of therapeutic anti-cancer mAbs. Antibodies, 9(4), 58.

    • Sapra, P., & Shor, B. (2013). Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacology & therapeutics, 138(3), 452-469.

    • Petersdorf, S., Kopecky, K., Stuart, R. K., Larson, R. A., Nevill, T. J., Stenke, L., ... & Appelbaum, F. R. (2009). Preliminary results of Southwest Oncology Group Study S0106: an international intergroup Phase 3 randomized trial comparing the addition of gemtuzumab ozogamicin to standard induction therapy versus standard induction therapy followed by a second randomization to post-consolidation gemtuzumab ozogamicin versus no additional therapy for previously untreated acute myeloid leukemia. Blood, 114(22), 790.

    • Oak, E., & Bartlett, N. L. (2015). Blinatumomab for the treatment of B-cell lymphoma. Expert opinion on investigational drugs, 24(5), 715-724.

    • Moreau, P., Garfall, A. L., van de Donk, N. W., Nahi, H., San-Miguel, J. F., Oriol, A., ... & Usmani, S. Z. (2022). Teclistamab in relapsed or refractory multiple myeloma. New England Journal of Medicine, 387(6), 495-505.

    Share This Chapter!