Release Date: 2024-01-25

Basic Mechanisms: Physiopathology / Pathogenesis

Burak Tatli (Author), Melis Ozkan (Author)

Release Date: 2024-01-25

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inApak and Tatli Pediatric Epileptology
    First Page1
    Last Page12
    DOIhttps://doi.org/10.69860/nobel.9786053358725.1
    Page Count12
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    • Magiorkinis E, Sidiropoulou K, Diamantis A. Hallmarks in the history of epilepsy: epilepsy in antiquity. Epilepsy Behav. 2010 Jan;17 (1):103-8.

    • Matsumoto H, Marsan C. Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Exp neurol. 1964 Apr;9:305-26

    • Prince DA. Neurophysiology of Epilepsy. In Cowan WM, Hall ZW, Kandel ER. Annual Rewiew of Neuroscience. Palo Alto, CA: Annual Rewiews, Vol. 1, 1978:395-415

    • Child ND, Benarroch EE. Differential distribution of voltage-gated ion channels in cortical neurons: implications for epilepsy. Neurology. 2014 Mar 18;82 (11):989-99

    • Mantegazza M, Franceschetti S, Avanzini G. Anemone toxin (ATX II) -induced increase in persistent sodium current: effects on the firing properties of rat neocortical pyramidal neurones. J Physiol. 1998 Feb 15;507:105-16

    • Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest. 2005 Aug;115 (8):2010-7

    • Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001 Jun;68 (6):1327-32

    • Mulley JC, Scheffer IE, Petrou S, Dibbens LM, Berkovic SF, Harkin LA. SCN1A mutations and epilepsy. Hum Mutat. 2005 Jun;25 (6):535-42

    • Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA ve ark Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci. 2006 Sep;9 (9):1142-9

    • Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I ve ark. Nav1. 1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an SCN1a gene mutation. J Neurosci. 2007 May 30;27 (22):5903-14

    • Simon Shorvon, Emilio Perucca, Jerome Engel. The Treatment of Epilepsy, Fourth Edition, UK, Wiley Blackwell Press, 2016

    • Swaiman K, Ashwal S, Ferriero D, Schor N, Finkel R, Gropman A, Pearl P, Shevell M. Swaiman’s Pediatric Neurology, Sixth Edition, Elsevier, 2018

    • Hodgkin AL, Huxley AF. Movement of sodium and potassium ions during nervous activity. Cold Spring Harb Symp Quant Biol. 1952;17:43-52

    • Levitan IB. Modulation of ion channels in neurons and other cells. Annu Rev Neurosci. 1988;11:119-36

    • Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK. A potassium channel mutation in neonatal human epilepsy. Science. 1998 Jan 16;279 (5349):403-6

    • Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, Ronen GM, Bjerre I, Quattlebaum T, Murphy JV, McHarg ML, Gagnon D, Rosales TO, Peiffer A, Anderson VE, Leppert M. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet. 1998 Jan;18 (1):25-9

    • Zhang JF, Randall AD, Ellinor PT, Horne WA, Sather WA, Tanabe T, Schwarz TL, Tsien RW. Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology. 1993 Nov;32 (11):1075-88

    • DiFrancesco JC, Barbuti A, Milanesi R, Coco S, Bucchi A, Bottelli G, Ferrarese C, Franceschetti S, Terragni B, Baruscotti M, DiFrancesco D. Recessive loss-of-function mutation in the pacemaker HCN2 channel causing increased neuronal excitability in a patient with idiopathic generalized epilepsy. J Neurosci. 2011 Nov 30;31 (48):17327-37

    • Nava C, Dalle C, Rastetter A, Striano P, de Kovel CG, Nabbout R ve ark. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet. 2014 Jun;46 (6):640-5

    • Seeburg PH. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 1993 Sep;16 (9):359-65

    • Najm IM, Ying Z, Babb T, Mohamed A, Hadam J, LaPresto E ve ark. Epileptogenicity correlated with increased N-methyl-D-aspartate receptor subunit NR2A/B in human focal cortical dysplasia. Epilepsia. 2000 Aug;41 (8):971-6

    • Isokawa M, Levesque M, Fried I, Engel J Jr. Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy. J Neurophysiol. 1997 Jun;77 (6):3355-69

    • Vincent P, Mulle C. Kainate receptors in epilepsy and excitotoxicity. Neuroscience. 2009 Jan 12;158 (1):309-23

    • Rakhade SN, Jensen FE. Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol. 2009 Jul;5 (7):380-91

    • Anwyl R. Metabotropic glutamate receptor-dependent long-term potentiation. Neuropharmacology. 2009 Mar;56 (4):735-40

    • Ure J, Baudry M, Perassolo M. Metabotropic glutamate receptors and epilepsy. J Neurol Sci. 2006 Aug 15;247 (1):1-9

    • Jacob TC, Moss SJ, Jurd R. GABA (A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci. 2008 May;9 (5):331-43

    • Hirose S. Mutant GABA (A) receptor subunits in genetic (idiopathic) epilepsy. Prog Brain Res. 2014;213:55-85

    • Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme JF ve ark. First genetic evidence of GABA (A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet. 2001 May;28 (1):46-8

    • Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG ve ark. Mutant GABA (A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet. 2001 May;28 (1):49-52

    • Silverstein FS, Jensen FE. Neonatal seizures. Ann Neurol. 2007 Aug;62 (2):112-20

    • Ben-Ari Y, Holmes GL. Effects of seizures on developmental processes in the immature brain. Lancet Neurol. 2006 Dec;5 (12):1055

    • Dulac O, Milh M, Holmes GL. Brain maturation and epilepsy. Handb Clin Neurol. 2013;111:441-6

    • Spitzer NC. Electrical activity in early neuronal development. Nature. 2006 Dec 7;444 (7120):707-12

    • Simeone TA, Sanchez RM, Rho JM. Molecular biology and ontogeny of glutamate receptors in the mammalian central nervous system. J Child Neurol. 2004 May;19 (5):343-60

    • Avallone J, Gashi E, Magrys B, Friedman LK. Distinct regulation of metabotropic glutamate receptor (mGluR1 alpha) in the developing limbic system following multiple early-life seizures. Exp Neurol. 2006 Nov;202 (1):100-11

    • Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist. 2012 Oct;18 (5):467-86

    • Staley KJ. Wrong-way chloride transport: is it a treatable cause of some intractable seizures? Epilepsy Curr. 2006 Jul-Aug;6 (4):124-7

    • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K. The K+/ Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999 Jan 21;397 (6716):251-5

    • Mohajerani MH, Cherubini E. Role of giant depolarizing potentials in shaping synaptic currents in the developing hippocampus. Crit Rev Neurobiol. 2006;18 (1-2):13-23

    • Dzhala VI, Talos DM, Sdrulla DA, Brumback AC, Mathews GC, Benke TA ve ark. NKCC1 transporter facilitates seizures in the developing brain. Nat Med. 2005 Nov;11 (11):1205-13

    • Donovan MD, Abduljalil K, Cryan JF, Boylan GB, Griffin BT. Application of a Physiologically-Based Pharmacokinetic Model for the Prediction of Bumetanide Plasma and Brain Concentrations in the Neonate. Biopharm Drug Dispos. 2018 Jan 10

    • Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol. 2010 Apr;9 (4):413-24

    • Jefferys JGR, Jiruska P, de Curtis M, Avoli M. Limbic Network Synchronization and Temporal Lobe Epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s Basic Mechanisms of the Epilepsies. 4th edition. Bethesda (MD): National Center for Biotechnology Information (US); 2012

    • Hablitz JJ, Johnston D. Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons. Cell Mol Neurobiol. 1981 Dec;1 (4):325-34

    • Engel J Jr, Bragin A, Staba R, Mody I. High-frequency oscillations: what is normal and what is not? Epilepsia. 2009 Apr;50 (4):598-604

    • Traub RD, Wong RK. Cellular mechanism of neuronal synchronization in epilepsy. Science. 1982 May 14;216 (4547):745-7

    • Falco-Walter JJ, Scheffer IE, Fisher RS. The new definition and classification of seizures and epilepsy. Epilepsy Res. 2017 Nov 28;139:73-79

    • Panayiotopoulos CP. Absence epilepsies. In: Engel J Jr, Pedley TA, eds. Epilepsy; a comprehensive textbook. Philadelphia: Lipincott-Raven, 2010

    • Williams D. A study of thalamic and cortical rhythms in petit Mal. Brain 1953;76:50-69

    • Marcus EM, Watson CW. Bilateral synchronous spike wave electrographic patterns in the cat. Interaction of bilateral cortical foci in the intact, the bilateral cortical-callosal, and adiencephalic preparation. Arch Neurol. 1966 Jun;14 (6):601-10

    • Snead OC 3rd. Basic mechanisms of generalized absence seizures. Ann Neurol. 1995 Feb;37 (2):146-57

    • Futatsugi Y, Riviello JJ Jr. Mechanisms of generalized absence epilepsy. Brain Dev. 1998 Mar;20 (2):75-9

    • Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993 Oct 29;262 (5134):679-85

    • Chang BS, Lowenstein DH. Epilepsy. N Engl J Med. 2003 Sep 25;349 (13):1257-66

    • Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1-7;316 (6027):440-3

    • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABA A receptor potentials. Nat Neurosci. 1999 Feb;2 (2):168- 74

    • McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol. 1992 Oct;39 (4):337-88

    • Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993 Oct 29;262 (5134):679-85

    • Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci. 2002 May;3 (5):371-82

    • Browne SH, Kang J, Akk G, Chiang LW, Schulman H, Huguenard JR ve ark. Kinetic and pharmacological properties of GABA (A) receptors in single thalamic neurons and GABA (A) subunit expression. J Neurophysiol. 2001 Nov;86 (5):2312-22

    • Glauser TA, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D ve ark. Childhood Absence Epilepsy Study Group. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med. 2010 Mar 4;362 (9):790-9

    • Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I ve ark. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet. 2000 Apr;24 (4):343-5

    • Wilmshurst JM, Gaillard WD, Vinayan KP, Tsuchida TN, Plouin P, Van Bogaert P ve ark. Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics. Epilepsia. 2015 Aug;56 (8):1185-97

    • Kullmann DM. The neuronal channelopathies. Brain. 2002 Jun;125 (Pt 6):1177-95

    • Sloviter RS, Bumanglag AV. Defining “epileptogenesis” and identifying “antiepileptogenic targets” in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology. 2013 Jun;69:3-15

    • Whitaker WR, Faull RL, Dragunow M, Mee EW, Emson PC, Clare JJ. Changes in the mRNAs encoding voltage-gated sodium channel types II and III in human epileptichippocampus. Neuroscience. 2001;106 (2):275-85

    • Loup F, Wieser HG, Yonekawa Y, Aguzzi A, Fritschy JM. Selective alterations inGABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci. 2000 Jul15;20 (14):5401-19

    • Parent JM, Lowenstein DH. Mossy fiber reorganization in the epileptic hippocampus. Curr Opin Neurol. 1997 Apr;10 (2):103-9

    • Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience. 1991;42 (2):351-63

    • Hubbard JA, Hsu MS, Fiacco TA, Binder DK. Glial cell changes in epilepsy: overview of the clinical problem and therapeutic opportunities. Neurochem Int. 2013 Dec;63 (7):638-51

    Share This Chapter!