Release Date: 2024-06-10

Highly Bioactive Triterpenoids, Oleanolic and Ursolic Acids: Focus on Their Neuroprotective Potentials

Release Date: 2024-06-10

Neuropsychiatric and neurodegenerative diseases are growing globally due to societal pressure and longer lifespans. Plants contain phytochemicals like ursolic acid (UA) and oleanolic acid (OA), which have therapeutic potential in treating and preventing brain diseases. OA and UA are classified as class IV drugs due to their limited intestinal permeability and poor water solubility. However, [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inNeurological Diseases and Treatments in Terms of Biochemistry
    First Page47
    Last Page65
    DOIhttps://doi.org/10.69860/nobel.9786053359357.4
    Page Count19
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    Neuropsychiatric and neurodegenerative diseases are growing globally due to societal pressure and longer lifespans. Plants contain phytochemicals like ursolic acid (UA) and oleanolic acid (OA), which have therapeutic potential in treating and preventing brain diseases. OA and UA are classified as class IV drugs due to their limited intestinal permeability and poor water solubility. However, they can be dispersed throughout the brain and pass across the blood brain barrier. Studies have shown their neuroprotective benefits on various models of brain illnesses, but clinical studies on their neuropharmacological effects are currently lacking. This study aims to review the functions of UA and OA in neuropsychiatric and neurodegenerative disorders, as well as the molecular and cellular signaling pathways they may control. OA has shown promising results in treating various brain disorders, including depression and anxiety. Future research on UA and OA’s effects on neurodegenerative and neuropsychiatric disorders is limited, but they have shown promising results in treating various brain disorders. Further clinical trials are needed to corroborate these findings and develop innovative dosage forms and methods for drug administration.

    Oguz Cakir (Author)
    Associate Professor, Dicle University
    https://orcid.org/0000-0002-8006-2054
    3B.S. 2008, Chemistry, Kahramanmaraş Sütçü İmam University M.Sc. 2011, Chemistry, Inonu University Ph.D. 2017, Chemistry, Dicle University ACADEMIC WORK and EMPLOYMENT Dicle University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Associate Professor, 2023-Present. RESEARCH Research Areas: analytical method validation, phytochemical analyses by HPLC, LC-MS/MS, and high-resolution mass spectrometry, and bioactivity investigation of natural products such as antioxidant, enzyme inhibitory, and cytotoxicity.

    Mustafa Abdullah Yilmaz (Author)
    Associate Professor, Dicle University
    https://orcid.org/0000-0002-4090-7227
    3Born: December 30, 1979. B.S. 2004, Chemistry, Middle East Technical University M.Sc. 2009, Chemistry, Harran University Ph.D. 2015, Chemistry, Dicle University ACADEMIC WORK and EMPLOYMENT Dicle University, Faculty of Pharmacy Associate Professor, Department of Analytical Chemistry, 2021-Present. Assistant Professor, Department of Pharmaceutical Chemistry, 2016-2021. Head of Mass Spectrometry and Chromatography Unit Dicle University Science and Technology Research and Application Center (DUBTAM), 2012-2021. RESEARCH Research Areas: analytical method validation, phytochemical analyses by HPLC, LC-MS/MS, and high-resolution mass spectrometry, and bioactivity investigation of natural products such as antioxidant, enzyme inhibitory, and cytotoxicity. WOS h index:23 120 scientific papers

    • Petrovic, S., Arsic, A., Ristic-Medic, D., Cvetkovic, Z., & Vucic, V. (2020). Lipid peroxidation and antioxidant supplementation in neurodegenerative diseases: a review of human studies. Antioxidants, 9(11), 1128.

    • Chen, C., Ai, Q., Shi, A., Wang, N., Wang, L., & Wei, Y. (2023). Oleanolic acid and ursolic acid: Therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders. Nutritional Neuroscience, 26(5), 414-428.

    • Cargnin, S. T., & Gnoatto, S. B. (2017). Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chemistry, 220, 477-489.

    • Pironi, A. M., de Araújo, P. R., Fernandes, M. A., Salgado, H. R. N., & Chorilli, M. (2018). Characteristics, biological properties and analytical methods of ursolic acid: A review. Critical Reviews in Analytical Chemistry, 48(1), 86-93.

    • López-Hortas, L., Pérez-Larrán, P., González-Muñoz, M. J., Falqué, E., & Domínguez, H. (2018). Recent developments on the extraction and application of ursolic acid. A review. Food Research International, 103, 130-149.

    • Jesus, J. A., Lago, J. H. G., Laurenti, M. D., Yamamoto, E. S., & Passero, L. F. D. (2015). Antimicrobial activity of oleanolic and ursolic acids: an update. Evidence-Based Complementary and Alternative Medicine, 2015.

    • Gudoityte, E., Arandarcikaite, O., Mazeikiene, I., Bendokas, V., & Liobikas, J. (2021). Ursolic and oleanolic acids: Plant metabolites with neuroprotective potential. International Journal of Molecular Sciences, 22(9), 4599.

    • Chen, Q., Luo, S., Zhang, Y., & Chen, Z. (2011). Development of a liquid chromatography–mass spectrometry method for the determination of ursolic acid in rat plasma and tissue: application to the pharmacokinetic and tissue distribution study. Analytical and bioanalytical chemistry, 399, 2877-2884.

    • Ramos-Hryb, A. B., Pazini, F. L., Kaster, M. P., & Rodrigues, A. L. S. (2017). Therapeutic potential of ursolic acid to manage neurodegenerative and psychiatric diseases. Cns Drugs, 31(12), 1029-1041.

    • Sporn, M. B., Liby, K. T., Yore, M. M., Fu, L., Lopchuk, J. M., & Gribble, G. W. (2011). New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress. Journal of natural products, 74(3), 537-545.

    • Ludeña-Huaman, M. A., & Ramos-lnquiltupa, D. A. (2019). Determination of the content of ursolic and oleanolic acid in the cuticular wax of fruits of different species of Rosaceae. Revista Colombiana de Química, 48(2), 15-20.

    • Santos Júnior, H. M., Lopes, K. C., Alves, D. S., Carvalho, G. A., & Oliveira, D. F. (2018). Ursolic acid and cis-tiliroside produced by Merremia tomentosa affect oviposition of Leucoptera coffeella on coffee plants. Química Nova, 41, 302-309.

    • Hashmi, M. A., Khan, A., Hanif, M., Farooq, U., & Perveen, S. (2015). Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evidence-Based Complementary and Alternative Medicine, 2015.

    • Wang, C. M., Chen, H. T., Li, T. C., Weng, J. H., Jhan, Y. L., Lin, S. X., & Chou, C. H. (2014). The role of pentacyclic triterpenoids in the allelopathic effects of Alstonia scholaris. Journal of chemical ecology, 40, 90-98.

    • Jäger, S., Trojan, H., Kopp, T., Laszczyk, M. N., & Scheffler, A. (2009). Pentacyclic triterpene distribution in various plants–rich sources for a new group of multi-potent plant extracts. Molecules, 14(6), 2016-2031.

    • Zhou, C., Zhang, Y., Sheng, Y., Zhao, D., Lv, S., Hu, Y., & Tao, J. (2011). Herbaceous peony (Paeonia lactiflora Pall.) as an alternative source of oleanolic and ursolic acids. International Journal of Molecular Sciences, 12(1), 655-667.

    • Kowalski, R. (2007). Studies of selected plant raw materials as alternative sources of triterpenes of oleanolic and ursolic acid types. Journal of Agricultural and Food chemistry, 55(3), 656-662.

    • Xia, E. Q., Wang, B. W., Xu, X. R., Zhu, L., Song, Y., & Li, H. B. (2011). Microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum Ait. International journal of molecular sciences, 12(8), 5319-5329.

    • Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 15(10), 565-581.

    • Wang, K., Sun, W., Zhang, L., Guo, W., Xu, J., Liu, S., ... & Zhang, Y. (2018). Oleanolic acid ameliorates Aβ25-35 injection-induced memory deficit in Alzheimer's Disease model rats by maintaining synaptic plasticity. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 17(5), 389-399.

    • Lin, K., Sze, S. C. W., Liu, B., Zhang, Z., Zhang, Z., Zhu, P., ... & Zhang, S. (2021). 20 (S)-protopanaxadiol and oleanolic acid ameliorate cognitive deficits in APP/PS1 transgenic mice by enhancing hippocampal neurogenesis. Journal of Ginseng Research, 45(2), 325-333.

    • Guo, Q., He, J., Zhang, H., Yao, L., & Li, H. (2020). Oleanolic acid alleviates oxidative stress in Alzheimer’s disease by regulating stanniocalcin‐1 and uncoupling protein‐2 signalling. Clinical and Experimental Pharmacology and Physiology, 47(7), 1263-1271.

    • Li, G., Hernandez-Ono, A., Crooke, R. M., Graham, M. J., & Ginsberg, H. N. (2011). Effects of antisense-mediated inhibition of 11β-hydroxysteroid dehydrogenase type 1 on hepatic lipid metabolism [S]. Journal of lipid research, 52(5), 971-981.

    • Castellano, J. M., Garcia-Rodriguez, S., Espinosa, J. M., Millan-Linares, M. C., Rada, M., & Perona, J. S. (2019). Oleanolic acid exerts a neuroprotective effect against microglial cell activation by modulating cytokine release and antioxidant defense systems. Biomolecules, 9(11), 683.

    • Ramírez-Espinosa, J. J., García-Jiménez, S., Rios, M. Y., Medina-Franco, J. L., López-Vallejo, F., Webster, S. P., ... & Estrada-Soto, S. (2013). Antihyperglycemic and sub-chronic antidiabetic actions of morolic and moronic acids, in vitro and in silico inhibition of 11β-HSD 1. Phytomedicine, 20(7), 571-576.

    • Mirza, F. J., Amber, S., Hassan, D., Ahmed, T., & Zahid, S. (2021). Rosmarinic acid and ursolic acid alleviate deficits in cognition, synaptic regulation and adult hippocampal neurogenesis in an Aβ1-42-induced mouse model of Alzheimer's disease. Phytomedicine, 83, 153490.

    • Yoon, J. H., Youn, K., Ho, C. T., Karwe, M. V., Jeong, W. S., & Jun, M. (2014). p-Coumaric acid and ursolic acid from corni fructus attenuated β-Amyloid25–35-induced toxicity through regulation of the NF-κB signaling pathway in PC12 cells. Journal of agricultural and food chemistry, 62(21), 4911-4916.

    • Hong, S. Y., Jeong, W. S., & Jun, M. (2012). Protective effects of the key compounds isolated from Corni fructus against β-amyloid-induced neurotoxicity in PC12 cells. Molecules, 17(9), 10831-10845.

    • Chung, Y. K., Heo, H. J., Kim, E. K., Kim, H. K., Huh, T. L., Lim, Y., ... & Shin, D. H. (2001). Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterase. Molecules and cells, 11(2), 137-143.

    • Honarvar, F., Hojati, V., Bakhtiari, N., Vaezi, G., & Javan, M. (2019). Myelin protection by ursolic acid in cuprizone-induced demyelination in mice. Iranian Journal of Pharmaceutical Research: IJPR, 18(4), 1978.

    • Zhang, Y., Li, X., Ciric, B., Curtis, M. T., Chen, W. J., Rostami, A., & Zhang, G. X. (2020). A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination. Proceedings of the National Academy of Sciences, 117(16), 9082-9093.

    • Xu, T., Wang, X., Zhong, B., Nurieva, R. I., Ding, S., & Dong, C. (2011). Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORγt protein. Journal of Biological Chemistry, 286(26), 22707-22710.

    • Ndlovu, B. C., Daniels, W. M., & Mabandla, M. V. (2014). Oleanolic Acid enhances the beneficial effects of preconditioning on PC12 cells. Parkinson’s Disease, 2014.

    • Mabandla, M. V., Nyoka, M., & Daniels, W. M. (2015). Early use of oleanolic acid provides protection against 6-hydroxydopamine induced dopamine neurodegeneration. Brain research, 1622, 64-71.

    • Msibi, Z. N., & Mabandla, M. V. (2019). Oleanolic acid mitigates 6-hydroxydopamine neurotoxicity by attenuating intracellular ROS in PC12 cells and striatal microglial activation in rat brains. Frontiers in physiology, 10, 442062.

    • Rai, S. N., Yadav, S. K., Singh, D., & Singh, S. P. (2016). Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. Journal of Chemical Neuroanatomy, 71, 41-49.

    • Peshattiwar, V., Muke, S., Kaikini, A., Bagle, S., Dighe, V., & Sathaye, S. (2020). Mechanistic evaluation of ursolic acid against rotenone induced Parkinson’s disease–emphasizing the role of mitochondrial biogenesis. Brain Research Bulletin, 160, 150-161.

    • Zahra, W., Rai, S. N., Birla, H., Singh, S. S., Rathore, A. S., Dilnashin, H., ... & Singh, S. P. (2020). Neuroprotection of rotenone-induced parkinsonism by ursolic acid in PD mouse model. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 19(7), 527-540.

    • Shih, Y. H., Chein, Y. C., Wang, J. Y., & Fu, Y. S. (2004). Ursolic acid protects hippocampal neurons against kainate-induced excitotoxicity in rats. Neuroscience letters, 362(2), 136-140.

    • Yi, L. T., Li, J., Liu, Q., Geng, D., Zhou, Y. F., Ke, X. Q., ... & Weng, L. J. (2013). Antidepressant-like effect of oleanolic acid in mice exposed to the repeated forced swimming test. Journal of Psychopharmacology, 27(5), 459-468.

    • Yi, L. T., Li, J., Liu, B. B., Luo, L., Liu, Q., & Geng, D. (2014). BDNF–ERK–CREB signalling mediates the role of miR-132 in the regulation of the effects of oleanolic acid in male mice. Journal of Psychiatry and Neuroscience, 39(5), 348-359.

    • Dong, S. Q., Wang, S. S., Zhu, J. X., Mu, R. H., Li, C. F., Geng, D., ... & Yi, L. T. (2019). Oleanolic acid decreases SGK1 in the hippocampus in corticosterone-induced mice. Steroids, 149, 108419.

    • Fajemiroye, J. O., Galdino, P. M., Florentino, I. F., Da Rocha, F. F., Ghedini, P. C., Polepally, P. R., ... & Costa, E. A. (2014). Plurality of anxiety and depression alteration mechanism by oleanolic acid. Journal of psychopharmacology, 28(10), 923-934.

    • Fajemiroye, J. O., Polepally, P. R., Chaurasiya, N. D., Tekwani, B. L., Zjawiony, J. K., & Costa, E. A. (2015). Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor. Scientific reports, 5(1), 11582.

    • Chattopadhyay, D., Arunachalam, G., Mandal, S. C., Bhadra, R., & Mandal, A. B. (2003). CNS activity of the methanol extract of Mallotus peltatus (Geist) Muell Arg. leaf: an ethnomedicine of Onge. Journal of ethnopharmacology, 85(1), 99-105.

    • Colla, A. R., Oliveira, A., Pazini, F. L., Rosa, J. M., Manosso, L. M., Cunha, M. P., & Rodrigues, A. L. S. (2014). Serotonergic and noradrenergic systems are implicated in the antidepressant-like effect of ursolic acid in mice. Pharmacology Biochemistry and Behavior, 124, 108-116.

    • Colla, A. R., Pazini, F. L., Lieberknecht, V., Camargo, A., & Rodrigues, A. L. S. (2021). Ursolic acid abrogates depressive-like behavior and hippocampal pro-apoptotic imbalance induced by chronic unpredictable stress. Metabolic Brain Disease, 36, 437-446.

    • Ha, J. H., Lee, K. Y., Choi, H. C., Cho, J., Kang, B. S., Lim, J. C., & Lee, D. U. (2002). Modulation of radioligand binding to the GABAA-benzodiazepine receptor complex by a new component from Cyperus rotundus. Biological and Pharmaceutical Bulletin, 25(1), 128-130.

    • Awad, R., Muhammad, A., Durst, T., Trudeau, V. L., & Arnason, J. T. (2009). Bioassay‐guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(8), 1075-1081.

    • Colla, A. R., Rosa, J. M., Cunha, M. P., & Rodrigues, A. L. S. (2015). Anxiolytic-like effects of ursolic acid in mice. European journal of pharmacology, 758, 171-176.

    Share This Chapter!