Release Date: 2024-06-05

Advancements in Image-Guided Radiation Therapy (IGRT)

Release Date: 2024-06-05

After X-rays were discovered by Wilhelm Conrad Röntgen in 1985, their use in clinics as a cancer treatment tool was rapid. With the developments in the field of CT and the use of CT in treatment planning, 3D conformal radiotherapy has been introduced, in which three-dimensional tumors can be created, normal tissues can be drawn, [...]

Media Type
    Buy from

    Price may vary by retailers

    Work TypeBook Chapter
    Published inThe Latest Innovative Approaches in Radiation Therapy
    First Page1
    Last Page26
    DOIhttps://doi.org/10.69860/nobel.9786053359425.1
    Page Count26
    Copyright HolderNobel Tıp Kitabevleri
    Licensehttps://nobelpub.com/publish-with-us/copyright-and-licensing
    After X-rays were discovered by Wilhelm Conrad Röntgen in 1985, their use in clinics as a cancer treatment tool was rapid. With the developments in the field of CT and the use of CT in treatment planning, 3D conformal radiotherapy has been introduced, in which three-dimensional tumors can be created, normal tissues can be drawn, and dose distributions can be calculated. In the 1990s, intensity-modulated radiotherapy (IMRT), began to be used. Compared to conformal radiation therapy, IMRT is more flexible in controlling beam fields, has better dose distribution, and has fewer side effects. Arc therapy appeared as a response to the limitations in fixed areas. Arc therapy has some advantages over IMRT. The desire to see the target volume during the treatment process led to the development of IGRT, which provides optimal targeting of the desired organs and limits them to critical organs. On-board systems refer to imaging devices connected to the radiotherapy device. The most commonly used on-board system is EPID. Clinical application of IGRT for verification and correction of the patient’s position can generally be done offline or online. The first monitors the patient’s position between fractions and reviews safety margins and/or plan accordingly. This is also known as adaptive radiation therapy (ART). Many geometric errors can be corrected online. Image-guided radiation therapy (IGRTx) that uses X-ray-based technology, which combines a kilovoltage X-ray source and a flat-panel imager with treatment devices, has been used for years, but despite its success, two inherent limitations to IGRTx have emerged. Magnetic resonance-guided radiation therapy (MRgRT) combines the magnetic resonance system with a radiotherapy device, allowing real-time imaging of the target volume and critical organs before and during treatment and renewing the plan when necessary. Recently, the use of surface-guided radiation therapy with optical surface scanning, intra-fraction movements, and breath tracking systems has increased in clinics. SGRT systems use a projector system and several camera systems to perform real-time, three-dimensional surface scanning of the patient.

    Hikmettin Demir (Author)
    Assistant Professor, Van Yuzuncu Yil University
    https://orcid.org/0000-0002-1171-4821
    3Assistant Professor Dr. Hikmettin Demir is a scientist with a professional career spanning over twenty years, making original contributions in the field of medical application of radiation physics. He completed his education as follows: Doctorate: Selcuk University, Faculty of Science, Physics, Turkey (2009-2020) Postgraduate: Gazi University, Institute of Science and Technology, Physics, Turkey (2005-2008) Undergraduate: Hacettepe University, Faculty of Engineering, Department of Physics Engineering, Turkey (1997-2004) Dr. Demir’s work has led to the publication of more than 30 research articles, oral and poster presentations, and numerous research projects. He has significant experience in Medical Physics across various hospitals. He is currently working at Van Yüzüncü Yıl University Medical Faculty in the Department of Biophysics, as well as in the Department of Radiation Oncology.

    • Bert, C., Metheany, K. G., Doppke, K., & Chen, G. T. (2005). A phantom evaluation of a stereo‐vision surface imaging system for radiotherapy patient setup. Med Phys, 32(9), 2753-2762.

    • Brahme, A., Nyman, P., & Skatt, B. (2008). 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med Phys, 35(5), 1670-1681.

    • Freislederer, P., Kügele, M., Öllers, M., Swinnen, A., Sauer, T.-O., Bert, C., Batista, V. (2020). Recent advances in surface guided radiation therapy. Radiation Oncology, 15, 1-11.

    • Hoisak, J. D., & Pawlicki, T. (2018). The role of optical surface imaging systems in radiation therapy. Paper presented at the Seminars in radiation oncology.

    • Kost, S., Shah, C., Xia, P., & Guo, B. (2018). Setup time and positioning accuracy in breast radiation therapy using surface guided radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 102(3), e481-e482.

    • Kügele, M., Mannerberg, A., Nørring Bekke, S., Alkner, S., Berg, L., Mahmood, F., Behrens, C. F. (2019). Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy. Journal of applied clinical medical physics, 20(9), 61-68.

    • Murphy, M. J., Balter, J., Balter, S., BenComo Jr, J. A., Das, I. J., Jiang, S. B., Ruchala, K. J. (2007). The management of imaging dose during image‐guided radiotherapy: report of the AAPM Task Group 75. Med Phys, 34(10), 4041-4063.

    • Nutti, B., Kronander, Å., Nilsing, M., Maad, K., Svensson, C., & Li, H. (2014). Depth Sensor-Based Realtime Tumor Tracking for Accurate Radiation Therapy. Paper presented at the Eurographics (Short Papers).

    • Pallotta, S., Marrazzo, L., Ceroti, M., Silli, P., & Bucciolini, M. (2012). A phantom evaluation of Sentinel™, a commercial laser/camera surface imaging system for patient setup verification in radiotherapy. Med Phys, 39(2), 706-712.

    • Placht, S., Stancanello, J., Schaller, C., Balda, M., & Angelopoulou, E. (2012). Fast time‐of‐flight camera based surface registration for radiotherapy patient positioning. Med Phys, 39(1), 4-17.

    • Allen Li, X. (2011). Adaptive Radiation Therapy. Med Phys, 38(7), 4467.

    • Allison, R. R., Gay, H. A., Mota, H. C., & Sibata, C. H. (2006). Image-guided radiation therapy: current and future directions.

    • Barnett, G. C., West, C. M., Dunning, A. M., Elliott, R. M., Coles, C. E., Pharoah, P. D., & Burnet, N. G. (2009). Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nature Reviews Cancer, 9(2), 134-142.

    • Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K.-W. (2012). Cancer and radiation therapy: current advances and future directions. International journal of medical sciences, 9(3), 193.

    • Begg, A. C., Stewart, F. A., & Vens, C. (2011). Strategies to improve radiotherapy with targeted drugs. Nature Reviews Cancer, 11(4), 239-253.

    • Bernier, J., Hall, E. J., & Giaccia, A. (2004). Radiation oncology: a century of achievements. Nature Reviews Cancer, 4(9), 737-747.

    • Bert, C., Metheany, K. G., Doppke, K., & Chen, G. T. (2005). A phantom evaluation of a stereo‐vision surface imaging system for radiotherapy patient setup. Med Phys, 32(9), 2753-2762.

    • Brahme, A. (2000). Development of radiation therapy optimization. Acta Oncologica, 39(5), 579-595.

    • Brahme, A., Nyman, P., & Skatt, B. (2008). 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med Phys, 35(5), 1670-1681.

    • Brock, K. K. (2019). Adaptive radiotherapy: moving into the future. Paper presented at the Seminars in radiation oncology.

    • Bucci, M. K., Bevan, A., & Roach III, M. (2005). Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA: a cancer journal for clinicians, 55(2), 117-134.

    • Castelli, J., Simon, A., Louvel, G., Henry, O., Chajon, E., Nassef, M., Jegoux, F. (2015). Impact of head and neck cancer adaptive radiotherapy to spare the parotid glands and decrease the risk of xerostomia. Radiation Oncology, 10, 1-10.

    • Chen, C., Wu, C., Zhong, Y., Xie, C., Zhou, Y., Liu, H., Zhao, H. (2020). A new registration algorithm of electronic portal imaging devices images based on the automatic detection of bone edges during radiotherapy. Scientific reports, 10(1), 10253.

    • Chen, Y.-P., Yeh, S.-A., Huang, Y.-H., Chang, L.-Y., Kuo, C.-M., & Ding, H.-J. (2013). A region-based Retinex with data filling for the enhancement of electronic portal images. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 709, 143-153.

    • Chin, S., Eccles, C. L., McWilliam, A., Chuter, R., Walker, E., Whitehurst, P., Choudhury, A. (2020). Magnetic resonance‐guided radiation therapy: a review. Journal of medical imaging and radiation oncology, 64(1), 163-177.

    • Colvett, K. (2006). The history of radiation oncology. Southern Medical Journal, 99(10), 1155-1157.

    • Corradini, S., Alongi, F., Andratschke, N., Azria, D., Bohoudi, O., Boldrini, L., Lagerwaard, F. (2021). ESTRO-ACROP recommendations on the clinical implementation of hybrid MR-linac systems in radiation oncology. Radiotherapy and Oncology, 159, 146-154.

    • Crijns, S., & Raaymakers, B. (2014). From static to dynamic 1.5 T MRI-linac prototype: impact of gantry position related magnetic field variation on image fidelity. Physics in Medicine & Biology, 59(13), 3241.

    • Dawson, L. A., & Sharpe, M. B. (2006). Image-guided radiotherapy: rationale, benefits, and limitations. The Lancet Oncology, 7(10), 848-858.

    • De Los Santos, J., Popple, R., Agazaryan, N., Bayouth, J. E., Bissonnette, J.-P., Bucci, M. K., Indelicato, D. (2013). Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. International Journal of Radiation Oncology* Biology* Physics, 87(1), 33-45.

    • Dearnaley, D. P., Khoo, V. S., Norman, A. R., Meyer, L., Nahum, A., Tait, D., Horwich, A. (1999). Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. The Lancet, 353(9149), 267-272.

    • Delaney, G., Jacob, S., Featherstone, C., & Barton, M. (2005). The role of radiotherapy in cancer treatment: estimating optimal utilization from a review ofevidence‐based clinical guidelines. Cancer: Interdisciplinary International Journal of the American Cancer Society, 104(6), 1129-1137.

    • Durante, M., Orecchia, R., & Loeffler, J. S. (2017). Charged-particle therapy in cancer: clinical uses and future perspectives. Nature Reviews Clinical Oncology, 14(8), 483-495.

    • El-Haddad, M., & Habash, A. (2006). The Use of Electronic Portortal Imaging Device in Correction of Setup Errors during External Beam Radiation Therapy Review and Initial Clinical Experience. Research in Oncology, 2(3-4), 48-59.

    • Emami, B., Lyman, J., Brown, A., Cola, L., Goitein, M., Munzenrider, J.,Wesson, M. (1991). Tolerance of normal tissue to therapeutic irradiation. International Journal of Radiation Oncology* Biology* Physics, 21(1), 109-122.

    • Wesson, M. (1991). Tolerance of normal tissue to therapeutic irradiation. International Journal of Radiation Oncology* Biology* Physics, 21(1), 109-122.

    • Fenwick, J. D., Tomé, W. A., Soisson, E. T., Mehta, M. P., & Mackie, T. R. (2006). Tomotherapy and other innovative IMRT delivery systems. Paper presented at the Seminars in radiation oncology.

    • Foroudi, F., Wong, J., Kron, T., Rolfo, A., Haworth, A., Roxby, P., . . . Williams, S. (2011). Online adaptive radiotherapy for muscle-invasive bladder cancer: results of a pilot study. International Journal of Radiation Oncology* Biology* Physics, 81(3), 765-771.

    • Freislederer, P., Kügele, M., Öllers, M., Swinnen, A., Sauer, T.-O., Bert, C.,Batista, V. (2020). Recent advances in surface guided radiation therapy. Radiation Oncology, 15, 1-11.

    • Galvin, J. M., & De Neve, W. (2007). Intensity modulating and other radiation therapy devices for dose painting. Journal of clinical oncology, 25(8), 924-930.

    • Glide-Hurst, C. K., Lee, P., Yock, A. D., Olsen, J. R., Cao, M., Siddiqui, F.,Kishan, A. U. (2021). Adaptive radiation therapy (ART) strategies and technical considerations: a state of the ART review from NRG oncology. International Journal of Radiation Oncology* Biology* Physics, 109(4), 1054-1075.

    • Goyal, S., & Kataria, T. (2014). Image guidance in radiation therapy: techniques and applications. Radiology research and practice, 2014.

    • Grégoire, V., Guckenberger, M., Haustermans, K., Lagendijk, J. J., Ménard, C., Pötter, R.,Van Herk, M. (2020). Image guidance in radiation therapy for better cure of cancer. Molecular oncology, 14(7), 1470-1491.

    • Guckenberger, M., Richter, A., Krieger, T., Wilbert, J., Baier, K., & Flentje, M. (2009). Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiotherapy and Oncology, 93(2), 259- 265.

    • Guckenberger, M., Wilbert, J., Richter, A., Baier, K., & Flentje, M. (2011). Potential of adaptive radiotherapy to escalate the radiation dose in combinedradiochemotherapy for locally advanced non–small cell lung cancer. International Journal of Radiation Oncology Biology Physics, 79(3), 901-908.

    • Hall, W. A., Paulson, E., Li, X. A., Erickson, B., Schultz, C., Tree, A., Salzillo, T. (2022). Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians. CA: a cancer journal for clinicians, 72(1), 34- 56.

    • Hariu, M., Suda, Y., Chang, W., Myojoyama, A., & Saitoh, H. (2017). Contrast enhancement for portal images by combination of subtraction and reprojection processes for Compton scattering. Journal of Applied Clinical Medical Physics, 18(6), 71-78.

    • Hoisak, J. D., & Pawlicki, T. (2018). The role of optical surface imaging systems in radiation therapy. Paper presented at the Seminars in radiation oncology.

    • Hounsfield, G. N. (1973). Computerized transverse axial scanning (tomography): Part 1. Description of system. The British Journal of Radiology, 46(552), 1016- 1022.

    • Jaffray, D. A. (2012). Image-guided radiotherapy: from current concept to future perspectives. Nature reviews Clinical oncology, 9(12), 688-699.

    • Jaffray, D. A., Siewerdsen, J. H., Wong, J. W., & Martinez, A. A. (2002). Flatpanel cone-beam computed tomography for image-guided radiation therapy. International Journal of Radiation Oncology Biology Physics, 53(5), 1337-1349.

    • Kashani, R., Hub, M., Kessler, M. L., & Balter, J. M. (2007). A physical phantom for assessment of accuracy of deformable alignment algorithms. Medical physics, 34(7), 2785-2788.

    • Korreman, S., Rasch, C., McNair, H., Verellen, D., Oelfke, U., Maingon, P.,Khoo, V. (2010). The European Society of Therapeutic Radiology and Oncology–European Institute of Radiotherapy (ESTRO–EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. Radiotherapy and Oncology, 94(2), 129-144.

    • Kost, S., Shah, C., Xia, P., & Guo, B. (2018). Setup time and positioning accuracy in breast radiation therapy using surface guided radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 102(3), e481-e482.

    • Kügele, M., Mannerberg, A., Nørring Bekke, S., Alkner, S., Berg, L., Mahmood, F.,Behrens, C. F. (2019). Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy. Journal of applied clinical medical physics, 20(9), 61-68.

    • Lagendijk, J. J., Raaymakers, B. W., Van den Berg, C. A., Moerland, M. A., Philippens, M. E., & Van Vulpen, M. (2014). MR guidance in radiotherapy. Physics in Medicine & Biology, 59(21), R349.

    • Lim-Reinders, S., Keller, B. M., Al-Ward, S., Sahgal, A., & Kim, A. (2017). Online adaptive radiation therapy. International Journal of Radiation Oncology Biology Physics, 99(4), 994-1003.

    • Lo, S. S., Fakiris, A. J., Chang, E. L., Mayr, N. A., Wang, J. Z., Papiez, L.,Timmerman, R. D. (2010). Stereotactic body radiation therapy: a novel treatment modality. Nature Reviews Clinical Oncology, 7(1), 44-54.

    • Murphy, M. J., Balter, J., Balter, S., BenComo Jr, J. A., Das, I. J., Jiang, S. B.,Ruchala, K. J. (2007). The management of imaging dose during image‐guided radiotherapy: report of the AAPM Task Group 75. Med Phys, 34(10), 4041-4063.

    • Nutti, B., Kronander, Å., Nilsing, M., Maad, K., Svensson, C., & Li, H. (2014). Depth Sensor-Based Realtime Tumor Tracking for Accurate Radiation Therapy. Paper presented at the Eurographics (Short Papers).

    • Oelfke, U. (2015). Magnetic resonance imaging-guided radiation therapy: technological innovation provides a new vision of radiation oncology practice. Clinical Oncology, 27(9), 495-497.

    • Otto, K. (2008). Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys, 35(1), 310-317.

    • Pallotta, S., Marrazzo, L., Ceroti, M., Silli, P., & Bucciolini, M. (2012). A phantom evaluation of Sentinel™, a commercial laser/camera surface imaging system for patient setup verification in radiotherapy. Med Phys, 39(2), 706-712.

    • Palma, D. A., Verbakel, W. F., Otto, K., & Senan, S. (2010). New developments in arc radiation therapy: a review. Cancer treatment reviews, 36(5), 393-399.

    • Pasma, K. L., Heijmen, B. J., Kroonwijk, M., & Visser, A. G. (1998). Portal dose image (PDI) prediction for dosimetric treatment verification in radiotherapy. I. An algorithm for open beams. Medical physics, 25(6), 830-840.

    • Placht, S., Stancanello, J., Schaller, C., Balda, M., & Angelopoulou, E. (2012). Fast time‐of‐flight camera based surface registration for radiotherapy patient positioning. Med Phys, 39(1), 4-17.

    • Polat, B., Wilbert, J., Baier, K., Flentje, M., & Guckenberger, M. (2007). Nonrigid patient setup errors in the head-and-neck region. Strahlentherapie und Onkologie, 183(9).

    • Richter, C., Seco, J., Hong, T. S., Duda, D. G., & Bortfeld, T. (2014). Radiationinduced changes in hepatocyte-specific Gd-EOB-DTPA enhanced MRI: potential mechanism. Medical Hypotheses, 83(4), 477-481.

    • Robertson, J. M., Kessler, M. L., & Lawrence, T. S. (1994). Clinical results of threedimensional conformal irradiation. JNCI: Journal of the National Cancer Institute, 86(13), 968-974.

    • Simpson, D. R., Lawson, J. D., Nath, S. K., Rose, B. S., Mundt, A. J., & Mell, L. K. (2010). A survey of image‐guided radiation therapy use in the United States. Cancer, 116(16), 3953-3960.

    • Sonke, J.-J., & Belderbos, J. (2010). Adaptive radiotherapy for lung cancer. Paper presented at the Seminars in radiation oncology.

    • Sterzing, F., Engenhart-Cabillic, R., Flentje, M., & Debus, J. (2011). Image-guided radiotherapy: a new dimension in radiation oncology. Deutsches Aerzteblatt International, 108(16), 274.

    • Tipton, K., Launders, J. H., Inamdar, R., Miyamoto, C., & Schoelles, K. (2011). Stereotactic body radiation therapy: scope of the literature. Annals of internal medicine, 154(11), 737-745.

    • Uldin, T. (2017). Virtual anthropology–a brief review of the literature and history of computed tomography. Forensic sciences research, 2(4), 165-173.

    • Van der Heide, U. A., Houweling, A. C., Groenendaal, G., Beets-Tan, R. G., & Lambin, P. (2012). Functional MRI for radiotherapy dose painting. Magnetic resonance imaging, 30(9), 1216-1223.

    • Verellen, D., De Ridder, M., & Storme, G. (2008). A (short) history of imageguided radiotherapy. Radiotherapy and Oncology, 86(1), 4-13.

    • Verellen, D., Ridder, M. D., Linthout, N., Tournel, K., Soete, G., & Storme, G. (2007). Innovations in image-guided radiotherapy. Nature Reviews Cancer, 7(12), 949-960.

    • Wang, X., Zhang, X., Dong, L., Liu, H., Wu, Q., & Mohan, R. (2004). Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy. International Journal of Radiation Oncology Biology Physics, 60(4), 1325-1337.

    • Yan, D. (2010). Adaptive radiotherapy: merging principle into clinical practice. Paper presented at the Seminars in radiation oncology.

    • Yan, D., Vicini, F., Wong, J., & Martinez, A. (1997). Adaptive radiation therapy. Physics in Medicine & Biology, 42(1), 123.

    • Yip, S. S., Rottmann, J., Chen, H., Morf, D., Füglistaller, R., Star‐Lack, J.,Berbeco, R. (2017). Combination of multiple EPID imager layers improves image quality and tracking performance of low contrast‐to‐noise objects. Medical physics, 44(9), 4847-4853.

    • Zhang, L., Garden, A. S., Lo, J., Ang, K. K., Ahamad, A., Morrison, W. H., Mohan, R. (2006). Multiple regions-of-interest analysis of setup uncertainties for headand- neck cancer radiotherapy. International Journal of Radiation Oncology Biology Physics, 64(5), 1559-1569.

    Share This Chapter!